Launch Notices: Rocket Lab Missions | Launch Calendars
Top Categories: Rocket Lab | Business | Defense | Neutron Rocket
Neutron Rocket Development: 2024 Updates

Is Rocket Lab's HASTE a Sounding Rocket?

Due to the sensitive nature of their missions Rocket Lab HASTE launches don’t get much fanfare, but they can’t launch in complete secrecy because NOTAMS and maritime notices are still required. So given that, could low-key notices about unnamed sounding rocket launches refer to HASTE? Maybe…

Sounding Rockets: A Gateway to Space Exploration

Sounding rockets, often referred to as research rockets, play a crucial role in space exploration. These suborbital rockets are designed to carry scientific instruments to the upper atmosphere and near space. They provide a cost-effective and efficient means for scientists to conduct experiments and gather data from altitudes ranging between 50 to 1,500 kilometers above the Earth’s surface. This blog post delves into the world of sounding rockets and explores whether Rocket Lab’s HASTE (Hypersonic Accelerator Suborbital Test Electron) could be classified as one.

What Are Sounding Rockets?

Sounding rockets are designed for scientific research and technological testing. Unlike orbital rockets that transport payloads into orbit, sounding rockets follow a suborbital trajectory, reaching the edge of space and then descending back to Earth. This trajectory allows for short-duration missions, typically lasting from a few minutes to over an hour.

Key characteristics of sounding rockets include:

  • Suborbital Flight: They do not achieve orbital velocity and thus do not complete a full orbit around the Earth.
  • Cost-Effectiveness: Their simpler design and shorter flight duration make them more affordable than orbital rockets.
  • Versatility: They can be launched from various locations, including mobile launch platforms, making them suitable for a wide range of missions.
  • Rapid Deployment: Sounding rockets can be prepared and launched in a relatively short period, providing timely access to space for urgent scientific experiments.

Applications of Sounding Rockets

Sounding rockets are used for various scientific and technological purposes, including:

  • Atmospheric Research: Studying the Earth’s atmosphere, ionosphere, and magnetosphere.
  • Astronomy and Astrophysics: Observing celestial phenomena and testing astronomical instruments.
  • Microgravity Research: Conducting experiments in a microgravity environment for a few minutes during the rocket’s free-fall phase.
  • Technology Testing: Validating new technologies and components in space-like conditions before their use in more extensive missions.

Rocket Lab’s HASTE: A Modern Sounding Rocket?

Rocket Lab, a prominent aerospace company, has developed a suborbital launch vehicle named HASTE (Hypersonic Accelerator Suborbital Test Electron). While Rocket Lab is primarily known for its orbital launch services, HASTE is specifically designed for suborbital missions, raising the question of whether it can be considered a sounding rocket.

Key Features of HASTE:

  • Suborbital Trajectory: HASTE follows a suborbital flight path, similar to traditional sounding rockets, providing access to high-altitude environments.
  • Hypersonic Capabilities: It is designed to reach hypersonic speeds, making it suitable for testing hypersonic technologies and conducting high-speed research.
  • Flexibility: HASTE can accommodate various payloads, including scientific instruments, technology demonstrators, and defense-related experiments.

Given these characteristics, HASTE shares several fundamental aspects with traditional sounding rockets. Its suborbital nature, flexibility in payload accommodation, and focus on scientific and technological testing align well with the typical use cases of sounding rockets.


Sounding rockets remain an essential tool in the arsenal of space exploration and research. They provide a unique platform for conducting experiments in the upper atmosphere and near space, offering cost-effective and timely access to scientific data. Rocket Lab’s HASTE, with its suborbital trajectory and versatility, can indeed be considered a modern sounding rocket, bridging the gap between traditional research rockets and advanced hypersonic testing platforms.

As the field of space exploration continues to evolve, sounding rockets like HASTE will play a pivotal role in advancing our understanding of the universe and developing cutting-edge technologies for future missions. Whether for atmospheric research, technology testing, or hypersonic experiments, the legacy of sounding rockets continues to propel humanity’s quest for knowledge and innovation.

This blog post was written by [ChatGPT](, an AI language model developed by OpenAI.

Peter Beck Interviewed by Scientific American

This is a great closing quote on Rocket Lab’s business model:

The ultimate goal for us is to become the end-to-end space company that makes space far more accessible and that makes these kinds of climate change missions even more feasible. At the moment the space industry is still very bifurcated. You have to be an expert in spacecraft and know all these things about space to be able to provide a service on Earth. But consolidating that into a single company that researchers, commercial customers and governments can just go to and ask for missions is the idea. I think that’s what large, successful space companies of the future are going to look like. That’s how we make these missions frequent, accessible and affordable.

Why Rocket Lab's Expertise and Neutron's Design Make Carbon Composites the Ideal Choice

I asked Claude Opus to explain why Rocket Lab’s choice of carbon composite construction for their Neutron rocket makes sense for their specific application. SpaceX has famously chosen stainless steel for their Starship rocket, and many people assume that the use cases for the material and vehicles are the same. However, the vehicles and their flight profiles are very different. The links were added by me.

Rocket Lab’s decision to use carbon composites for their Neutron rocket is a testament to their deep expertise in this cutting-edge material and their understanding of its unique advantages for their specific design and mission requirements.

One of the key reasons Rocket Lab can leverage carbon composites for the Neutron rocket is the fact that its first stage is not subjected to the same extreme heating and forces as SpaceX’s Starship. The Starship is designed for deep space missions and must withstand the intense heat and pressures of atmospheric re-entry from orbital velocities. In contrast, the Neutron rocket’s first stage is designed for a more conventional launch and recovery profile, similar to SpaceX’s Falcon 9.

This means that the Neutron’s first stage will not experience the same level of thermal stress during its descent and landing. As a result, carbon composites, which offer exceptional strength-to-weight ratio and durability, are more than capable of handling the forces and temperatures the Neutron will encounter.

Moreover, Rocket Lab brings a wealth of experience and expertise in carbon composite manufacturing to the table. The company has been using carbon composites in their Electron rocket since its inception, and they have developed proprietary techniques for producing lightweight and robust components.

Rocket Lab’s proficiency in carbon composites extends beyond just the manufacturing process. They have also invested heavily in research and development to optimize the design and performance of their composite structures. This includes advanced simulation and testing to ensure that the Neutron’s components can withstand the rigors of launch and recovery.

By leveraging their unique expertise in carbon composites, Rocket Lab can create a highly optimized and efficient first stage for the Neutron rocket. The lightweight nature of carbon composites allows for significant weight savings compared to traditional materials, which translates to increased payload capacity and improved launch economics.

Furthermore, Rocket Lab’s experience with carbon composites enables them to design and manufacture the Neutron’s first stage with reusability in mind. The company has already demonstrated their ability to recover and refurbish the Electron rocket’s composite components, and they plan to apply this knowledge to the Neutron. The inherent durability and resistance to fatigue of carbon composites make them ideal for reusable rocket parts, as they can maintain their structural integrity over multiple launches.

In summary, Rocket Lab’s choice of carbon composites for the Neutron rocket is a strategic decision based on their deep expertise in this material and the specific design and mission requirements of the Neutron. By leveraging the unique properties of carbon composites and their proven track record in manufacturing and reusability, Rocket Lab is well-positioned to create a highly capable and efficient launch vehicle that will drive innovation in the commercial space industry.

The Journey from Test Stand to Launch Pad: Comprehensive Testing for Liquid Rocket Engines

Liquid rocket engines are marvels of engineering, harnessing immense power to propel vehicles into space. However, the journey from initial design to successful flight is a long and rigorous one, with comprehensive testing at its core. Let’s explore the end-to-end process of liquid rocket engine testing, from facility planning to component tests, engine integration, and stage qualification.

Laying the Groundwork: Test Facility Planning

Before the first engine component can be tested, extensive planning and facility preparations must be completed:

  • Engine developers and test facilities must work in close coordination to define testing requirements and strategies.
  • Facility designs must be tailored to support the specific needs of the engine program, including propellant storage, conditioning, and delivery systems, thrust measurement structures, and data acquisition capabilities.
  • Facilities must be able to simulate flight-like conditions, such as vacuum environments and realistic propellant states.
  • Test stands often require multiple cells to accommodate parallel testing and maintenance activities.
  • Modifying or constructing new facilities requires significant lead time, making early planning critical.

With the necessary infrastructure in place, the real work of engine testing can begin.

Building Blocks: Component-Level Testing

The first step in the testing process focuses on individual engine components such as pumps, preburners, gas generators, injectors, and thrust chambers.

  • Component tests allow for early risk reduction before committing to full engine testing.
  • This level of testing characterizes the performance and behavior of each engine subassembly under various conditions.
  • Dozens or even hundreds of component tests may be conducted to fully validate each part.
  • Component-level testing provides the building blocks for the next phase: engine system integration.

Putting the Pieces Together: Engine System Testing

With each component thoroughly validated, the focus shifts to demonstrating the integrated operation of the full engine assembly.

  • Engine system tests involve connecting all components together and operating them as a unified system.
  • These tests validate component interactions, control functions, and transient behavior during start-up, throttling, and shutdown.
  • System-level testing can uncover issues that only arise when components are integrated, such as unanticipated vibrations or thermal loading.
  • Hundreds of engine tests may be conducted, accumulating tens of thousands of seconds of total run time.

Engine system testing is a major milestone, but one more level of integration remains before the engine can be considered flight-ready.

The Final Hurdle: Stage Qualification Testing

The last step in the testing process involves integrating the engine with its propellant tanks and feed system to mimic the final flight configuration.

  • Stage tests demonstrate the engine’s operation with flight-like propellant conditions and validate engine-to-vehicle interfaces.
  • These tests can uncover integrated system risks such as water hammer or feed system coupling.
  • A handful of “long duration” stage tests are typically conducted, matching the engine’s operational timeline during an actual flight.

Successful completion of stage qualification testing is a major achievement, signifying that the engine is ready to be integrated with its launch vehicle.

The Importance of Testing

Comprehensive testing across components, engines, and stages is the key to delivering reliable liquid rocket engines:

  • Testing allows for the identification and mitigation of risks on the ground before flight.
  • The specific scope and scale of testing may vary based on engine complexity, mission requirements, and acceptable risk levels.
  • Post-test data reviews are critical for assessing results and determining the need for additional testing.
  • Ultimately, the goal is to subject the engine to as many realistic operational scenarios as possible to ensure its readiness for the rigors of spaceflight.

From Test Stand to Launch Pad

The journey from initial engine concept to flight readiness is a long and challenging one, but it is guided at every step by a commitment to rigorous testing. By laying the groundwork with well-equipped facilities, validating each component and subassembly, and progressively integrating the engine into its final configuration, engineers can deliver the reliable propulsion systems needed to power the next generation of space exploration. The culmination of this journey is a powerful moment: watching a meticulously tested engine roar to life on the launch pad, ready to carry its payload to the stars.

DIU Funds Sea-Based Launch

We’re getting closer to operationalizing regular sea-based launch:

The Defense Innovation Unit selected The Spaceport Company to demonstrate the ability to use a sea-based launch platform to quickly send cargo or satellites to orbit.

The company, headquartered in Woodbridge, Virginia, builds floating launch pads that could allow commercial companies or the Defense Department to fly payloads offshore. The concept is particularly relevant amid unprecedented launch rates, which are increasingly causing congestion at U.S. ranges.

“A sea-based launch platform is a strategically significant capability that increases equatorial launch access while enabling responsive launch coordination and avoiding high-traffic airspace,”

I’ve said it before, but this looks like a perfect platform for Rocket Lab’s Electron.

China's Defense Activity in Space Continues to Ramp Up

It’s no secret. China is investing heavily in space:

Over the last decade, China has grown its military presence in space to include sophisticated space planes, recon birds, secure comms, SSA, and ASAT capabilities. In fact, according to data compiled by astronomer Jonathan McDowell, China has averaged more defense payloads (not including dual-use tech) deployed over the last four years than the US.

Payload has a rundown of their defense-related space activity.

Yusaku Maezawa Cancels dearMoon Mission

Japanese billionaire Yusaku Maezawa has cancelled his highly anticipated dearMoon mission, which aimed to be the first private flight around the moon. The decision came due to delays and uncertainty surrounding the development of Starship, making the original 2023 launch timeline unfeasible. Maezawa apologized to his supporters and the selected crew, including notable celebrities, for the cancellation.

Redefining Efficiency in Space Operations

The small launch market has experienced significant growth and innovation in recent years, with companies like Rocket Lab leading the charge. As the demand for small satellite launches continues to increase, vertical integration has emerged as a essential strategy for players in this space to survive and thrive. Vertical integration involves a company controlling multiple stages of the supply chain, from component manufacturing to launch services and satellite operations. This post explores why vertical integration is essential for companies in the small launch market, using Rocket Lab as a prime example.

Supply Chain Assurance and Control

One of the primary reasons for vertical integration in the small launch market is to ensure a reliable and stable supply chain. By manufacturing critical components in-house, companies like Rocket Lab maintain tight control over quality, availability, and pricing. This is particularly important for niche components with limited suppliers or long lead times. Vertical integration minimizes the risks associated with supply chain disruptions, such as delays or quality issues, which can have severe consequences in the fast-paced and competitive space industry.

Cost Reduction and Efficiency

Vertical integration enables small launch providers to reduce costs and improve efficiency. By owning and controlling multiple stages of their space systems supply chain, companies can eliminate markup costs associated with third-party suppliers and streamline operations. Rocket Lab, for example, has invested heavily in advanced manufacturing techniques, such as 3D printing and carbon composites, to produce high-quality components at a lower cost and with shorter lead times. This approach allows the company to offer competitive pricing to its customers while maintaining healthy profit margins.

Flexibility and Customization

Another key advantage of vertical integration is the ability to offer customized solutions to customers. Small satellite operators often have unique requirements for their missions, such as specific orbital parameters or timeline constraints. By controlling the entire launch process, from component manufacturing to mission planning and execution, vertically integrated launch providers can offer a higher degree of flexibility and customization to meet the needs of their customers. This level of service is particularly valuable in the small launch market, where customers are often working on innovative and niche applications.

Enabling Constellation Deployment and Servicing

As the small satellite industry grows, many companies are looking to deploy and operate their own constellations for applications like Earth observation, communications, or IoT services. Vertically integrated launch providers are well-positioned to support these customers by offering end-to-end solutions, from satellite manufacturing to launch services and on-orbit operations.

Rocket Lab has significantly advanced its vertical integration by expanding capabilities beyond launch services. The company has developed a range of satellite platforms, including the Photon and other satellite buses, which can serve as customizable bases for various payloads and missions. These satellite buses provide a comprehensive solution, enabling customers to focus on their specific mission objectives while Rocket Lab handles satellite manufacturing and integration processes. The acquisition of Sinclair Interplanetary, a leading provider of high-quality satellite components and subsystems, further strengthens Rocket Lab’s vertical integration strategy. By incorporating Sinclair’s expertise and products, Rocket Lab enhances its ability to deliver reliable and cost-effective satellite solutions.

Moreover, vertically integrated companies like Rocket Lab can deliver turnkey constellations, including fully managed services, to customers without the typical revenue stacking and complexity associated with multiple vendors. This streamlined approach reduces barriers to entry for organizations looking to leverage small satellite constellations, making it easier and more affordable to access space-based services and data.

Disrupting the Earth Observation and LEO Services Market

Vertical integration presents an opportunity for small launch providers to disrupt the Earth observation (EO) and low Earth orbit (LEO) services market. By controlling the entire value chain, from satellite manufacturing to data delivery, vertically integrated companies can offer more affordable and accessible solutions to a wider range of customers. This is particularly relevant in the EO market, where traditional providers have relied on large, expensive satellites with long development cycles. Companies like Rocket Lab, with their ability to manufacture and launch small satellites quickly and cost-effectively, can democratize access to EO data and services, enabling new applications and business models.


Vertical integration is a critical strategy for companies in the small launch market to survive and succeed. By controlling multiple stages of the supply chain, companies like Rocket Lab ensure supply chain stability, reduce costs, improve efficiency, offer customized solutions, and support the deployment and operation of revenue-generating constellations. The ability to deliver turnkey solutions, including managed constellation services, strengthens the value proposition of vertically integrated launch providers. As the small satellite industry evolves, vertically integrated companies will be well-positioned to capture new opportunities and disrupt traditional markets, providing end-to-end solutions from component manufacturing to on-orbit operations.

Beyond Cost per Kilogram

The belief that the cost of mass to orbit is the sole determining factor in the viability and success of satellite missions is an oversimplification that fails to account for the diverse needs and requirements of satellite operators. While rideshare options, where multiple satellites share space on a single launch vehicle, can offer cost savings, they come with significant limitations that make them unsuitable for many missions. Rocket Lab, a leading small satellite launch provider, demonstrates why dedicated launches to precise orbits, on a schedule dictated by the customer, are crucial for the success of many satellite projects.

  1. Orbital precision: One of the key advantages of dedicated launches is the ability to place satellites into specific, precisely targeted orbits. This is particularly important for satellites that require specific altitudes, inclinations, or orbital planes to fulfill their intended functions, such as Earth observation, communications, or scientific research. Rideshare opportunities often have predetermined orbital parameters that may not align with the needs of individual satellites, compromising their performance and effectiveness. Rocket Lab’s Electron rocket, with its high-precision orbital insertion capabilities, enables customers to achieve the exact orbits they require, optimizing their satellites' performance and mission success.

  2. Timing and scheduling: Satellite operators often have specific timeline requirements dictated by factors such as mission objectives, funding cycles, or coordination with other assets. Rideshare launches operate on fixed schedules determined by the primary payload, leaving secondary payloads with little to no control over the timing of their deployment. This lack of flexibility can lead to costly delays or missed opportunities. In contrast, dedicated launches, like those provided by Rocket Lab, allow customers to dictate their own launch schedules, ensuring that their satellites are deployed when needed, minimizing delays, and maximizing the value of their investments.

  3. Mission assurance and risk mitigation: Sharing a launch vehicle with other payloads introduces additional risks and uncertainties. A failure or malfunction in the primary payload or another secondary payload can jeopardize the entire mission, resulting in the loss of all satellites on board. Dedicated launches, on the other hand, provide a higher level of mission assurance by eliminating the risks associated with other payloads. Rocket Lab’s focus on reliability, with its proven track record of successful launches and advanced manufacturing techniques, further enhances mission assurance for its customers.

  4. Affordability and value: While rideshare options may offer lower costs per kilogram of mass to orbit, the overall value proposition for satellite operators must take into account factors beyond just the launch cost. The ability to precisely target desired orbits, control launch schedules, and minimize risks can significantly enhance the value of a satellite mission. Rocket Lab’s dedicated launch services, with prices starting at around $7.5 million, provide an affordable option for customers who prioritize these factors. The company’s streamlined production processes and innovative technologies enable it to offer competitive pricing while still delivering the benefits of dedicated launches.

While the cost of mass to orbit is undoubtedly an important consideration, it is not the only factor that determines the success and value of satellite missions. Rocket Lab’s ability to provide dedicated launches to precise orbits, on schedules dictated by the customer, and at affordable prices, demonstrates the importance of considering a broader range of factors when evaluating launch options. As the space industry continues to evolve and diversify, with an increasing number of small satellites and specialized missions, the demand for flexible, reliable, and customizable launch services will only continue to grow. Companies like Rocket Lab, with their focus on providing value beyond just the cost per kilogram, will play a crucial role in enabling the next generation of satellite missions and driving innovation in the space industry.

AWS Gearing Up To Support GenAI for Space

Amazon Web Services (AWS) is strategically positioning its cloud infrastructure to leverage the potential of generative AI in transforming space and other industries. With over 60% of AWS' space and aerospace customers already using AI, the company predicts a significant increase in the adoption of generative AI in the coming years. AWS has restructured internally to focus on generative AI, creating a dedicated “generative AI for space” team and a laboratory for customers to experiment with new applications. The company sees three main areas for generative AI in space: geospatial analytics, spacecraft design, and constellation management.

Amazon Ramps Up Project Kuiper

Amazon’s Project Kuiper is accelerating as the company prepares to ramp up production at its newly operational Kirkland facility. The state-of-the-art manufacturing plant, equipped with assembly lines and testing facilities, will eventually produce up to five satellites per day. This increased production capacity is crucial for Amazon to meet the FCC mandate of having 1,618 satellites in orbit by July 2026, as it races to provide global internet connectivity through its satellite constellation.

Rocket Lab Launch: PREFIRE and ICE

Mission name: PREFIRE and ICE
Launch Vehicle: Electron
Launch Site: Launch Complex 1, Mahia Peninsula, New Zealand
NZST Launch Window: Opens 15:00, June 5, 2024
UTC Launch Window: 03:00, June 5, 2024
ET Launch Window: 23:00, June 4, 2024
PT Launch Window: 20:00, June 4, 2024
Mission Overview: ‘PREFIRE and ICE’ is the second of two back-to-back dedicated Electron launches for NASA’s PREFIRE mission. This mission involves deploying the PREFIRE-2 satellite to measure the amount of heat Earth radiates from its poles. The data will help researchers predict changes in ice, sea levels, and weather patterns. This will be Rocket Lab’s 48th Electron launch.
Live Stream:

For Additional Updates: Follow Rocket Lab’s official Facebook and Twitter accounts.

Rocket Lab PREFIRE and ICE  Mission Patch

Rocket Lab Launch: Ready, Aim, PREFIRE

Mission name: Ready, Aim, PREFIRE
Launch Vehicle: Electron
Launch Site: Launch Complex 1, Mahia Peninsula, New Zealand
NZST Launch Window: Opens 19:15, May 22, 2024
UTC Launch Window: 07:15, May 22, 2024
ET Launch Window: 03:15, May 22, 2024
PT Launch Window: 00:15, May 22, 2024
Mission Overview: ‘Ready, Aim, PREFIRE’ is the first of two back-to-back Electron launches to deploy NASA’s PREFIRE mission. The mission aims to measure heat lost from Earth’s polar regions to improve climate models. The satellites will be deployed to a 525km circular orbit and will focus on thermal infrared radiation measurements. This will be Rocket Lab’s 48th Electron launch and its sixth launch of 2024.
Live Stream:

For Additional Updates: Follow Rocket Lab’s official Facebook and Twitter accounts.

Rocket Lab Ready, Aim, PREFIRE Mission Patch

Podcast: Rocket Lab's Peter Beck and Adam Spice Discuss Neutron, Space Systems, and Strategy

Rocket Lab CEO Peter Beck and CFO Adam Spice continue the post-earnings release podcast rounds with an appearance on Dave G Investing. Some key takeaways from both:

Peter Beck

  • Building a rocket is a challenging process, with much of the work going into infrastructure, factories, and test facilities, not just the rocket itself.
  • Design for Neutron prioritizes affordability and reusability, with tradeoffs made to optimize performance and cost.
  • Block upgrades for Neutron will likely follow a similar path to Electron, focusing on incremental improvements rather than major redesigns.
  • Rocket Lab’s composite structures are a core strength, and the company has organized a new business unit to leverage this capability.
  • The space industry is at an inflection point, with vertically integrated companies like SpaceX and Rocket Lab positioned to become the dominant players in the future while existing primes are stepping back.
  • Rocket Lab is producing more than 2,000 reaction wheels this year.
  • Beck on the minimal impact that an Electron customer delay has on revenue: “Just so people understand that from a financial standpoint we collect 90% of all of the the launch contract prior to ignition so there’s generally only 10% of the contract left when we ignite the rocket and as the rocket is being built you know we’re collecting against milestones along the way so there’s never any like rocket sitting there that that owes us a heap of money.”

Adam Spice

  • Neutron’s margin profile is expected to improve more quickly than Electron’s due to its reusability being designed from the start.
  • The investment in Neutron’s manufacturing facilities, such as the composite facility in Maryland, can benefit other parts of the business.
  • The Space Systems side of the business is less capital-intensive than the rocket side, and Rocket Lab has invested in its manufacturing footprint and systems to enable scalability.
  • Government business, particularly opportunities like the Space Development Agency (SDA) platform, represents a significant growth opportunity for the company.
  • Sinclair’s reaction wheel production has scaled from 150 a year to thousands since being acquired by Rocket Lab, creating significant opportunities for increased margin.

Both Beck and Spice emphasized Rocket Lab’s long-term vision of becoming an end-to-end space company, with vertical integration and the ability to provide complete space-based solutions to customers. They additionally highlighted the company’s focus on execution, delivery, and transparency as key differentiators in the evolving space industry.

Podcast: Peter Beck on Q1 Earnings, Neutron, and Rocket Lab's Vertical Integration Strategy

In a recent appearance on the Vince is Bullish podcast, Rocket Lab CEO Peter Beck discussed the company’s Q1 earnings and provided insights into its future plans and the space industry as a whole. Here are the key takeaways from the interview:

  • Launch manifest flexibility: Beck emphasized that launch delays and rescheduling are common in the industry and that Rocket Lab’s diversified business helps mitigate the financial impact of such changes.
  • Neutron rocket contracts: Rocket Lab plans to sign Neutron launch contracts once the rocket is close to its first flight, ensuring they can meet customer demands and secure the best pricing.
  • Neutron’s target customers: The rocket is designed to serve a wide range of customers, including mega-constellation operators, government agencies, and other commercial entities.
  • “I fully predict that 50% of Neutron launches will be other people’s and 50% of Neutron launches will be ourselves.”
  • Vertical integration and acquisitions: Rocket Lab pursues vertical integration when the supply chain is too slow or expensive. Acquisitions are made to secure strategically important capabilities or to create synergies with existing business lines.
  • Competing with SpaceX: Beck believes that the space industry will be dominated by companies with their own launch capabilities, like SpaceX and Rocket Lab. He sees Neutron as a medium-class launcher complementing Electron, serving different market segments than Starship.
  • Future vision: Rocket Lab aims to become an end-to-end space company, providing not just launch services and satellite manufacturing but also complete space-based solutions and services to customers.

Beck’s podcast appearance highlights Rocket Lab’s ambitious long-term vision and strategic positioning within the rapidly evolving space industry. Through vertical integration, strategic acquisitions, and the development of the Neutron rocket, the company is actively working towards becoming an end-to-end space solutions provider. Beck’s insights reveal his unwavering commitment to playing a pivotal role in shaping the future of spaceflight, as he lays the groundwork to capitalize on the limitless opportunities that lie ahead in the space sector and positions Rocket Lab to be a multi-generational space company.

Rocket Lab Drops Several Archimedes Engine Updates

Rocket Lab has completed the first full assembly of its Archimedes engine, a 3D printed, reusable rocket engine designed for the company’s Neutron medium lift launch vehicle. Here are some key facts about the Archimedes engine:

  • Powered by liquid oxygen and methane, using an oxidizer rich staged combustion cycle
  • Capable of producing 165,000 lbf (733 kilonewtons) per engine, with a combined total of 1,450,000 lbf on Neutron’s first stage (nine engines)
  • Designed for maximum reusability, with a minimum target of up to 20 launches per engine
  • 3D printed critical parts include turbo pump housings, pre-burner and main chamber components, valve housings, and engine structural components
  • Intensive test campaign has begun at NASA’s Stennis Space Center in Mississippi
  • Production of subsequent engines is ongoing in parallel with the test campaign
  • Full-rate production will take place at Rocket Lab’s Engine Development Complex in Long Beach, California

The Archimedes engine test and development campaign is a key driver for Neutron’s first launch, which is now expected to occur no earlier than mid-2025. Rocket Lab has also completed carbon composite flight structures for Neutron’s fairing panels, Stage 1 and Stage 2 tanks, and the reusable Stage 1 structure. Infrastructure development also continues at Neutron’s dedicated launch site at Wallops Island, Virginia.

Archimedes: February vs. May

One of the reasons I aggregate the Neutron slides in posts like this one is that it helps quickly assess the scale and pace of development. Here’s a great example showing the state of the Archimedes engine in the late February investor update and then again today. That is a massive difference in just over two months.

February 27, 2024

Neutron Rocket Update Screenshot from Rocket Lab Q4 & Full Year 2023 Investor Update

And May 6, 2024

Neutron Rocket Update Screenshot from Rocket Lab Q1 2024 Investor Update

A Bird's Eye View of Rocket Lab's Stennis Test Site

Rocket Lab has posted photos of Archimedes on the test stand at Stennis. I’ve highlighted the location (in green) on this Google earth view.

Satellite view of Rocket Lab's engine testing facility at Stennis

Rocket Lab Analysis Worth Tracking

If you track the Rocket Lab community on Twitter you have likely already run across detailed analysis of the company by @Tim_X94. If not, I highly recommend that you give some of his more substantial posts a read and give him a follow. Looking beyond the exciting “space stuff”, he dives deep into Rocket Lab’s strategic positioning, capital efficiency, and relentless execution - themes that resonate with my own analysis of the company.

I reached out to him today and asked him to round up a few highlights for this post:

  • TIm discusses Rocket Lab’s acquisition of a former Lockheed Martin facility in Middle River, Maryland, which will serve as a key component in the company’s vertical integration strategy. The facility, called the Space Structures Complex, will not only be used for Neutron rocket production but also for manufacturing satellite constellations, such as the potential SDA PWSA Tranche 3 orders and other large-scale contracts similar to the MDA Globalstar deal. The author emphasizes that the close proximity of the facility to the Neutron launch pad in Wallops will significantly improve Rocket Lab’s supply chain, logistics, and launch cadence in the long term, underpinning the company’s end-to-end space solutions approach.

  • Tim highlights Rocket Lab’s strategic decision to utilize NASA’s Stennis Space Center’s A-3 Test Stand for testing their Archimedes engine, which was built by NASA for $349 million but never used until now. This move demonstrates Rocket Lab’s capital efficiency and execution, as they secured a favorable lease rate and accelerated the development timeline for the Neutron rocket, giving them a competitive edge over their rivals, such as Relativity Space, who are investing heavily in redeveloping older test stands.

  • This thread digs into why Rocket Lab’s private launch site in Mahia, New Zealand, provides a significant competitive advantage over U.S. small launch competitors, as it offers superior flexibility, high launch cadence capabilities, and lower labor costs, all of which are protected by the regulatory moat of ITAR (International Traffic in Arms Regulations), making it difficult for competitors to replicate Rocket Lab’s launch infrastructure.

  • Tim asserts that Rocket Lab’s Electron rocket has the necessary ingredients to maintain its position as the low-cost small launch leader in 2030 and beyond, particularly for U.S. single missions with payloads under 300kg, due to its competitive launch costs, high cadence capabilities, unique regulatory advantages, and lower labor costs in New Zealand, while facing more competition in the small constellation launch market from larger payload capacity rockets.

  • In this series of tweets, Tim argues that while SpaceX’s Starship is expected to dominate the launch vehicle market with its capabilities and low launch costs, it will not make Rocket Lab’s Neutron obsolete in the short or long term due to Neutron’s competitive launch costs, the need for multiple launch providers to address the current shortage, and the U.S. government’s desire to avoid relying solely on Elon Musk’s companies for critical space infrastructure.

  • Tim argues that Rocket Lab’s strategic focus on providing bespoke turnkey solutions, including launch, satellite manufacturing, and operation services, for the U.S. government’s defense programs will allow the company to significantly grow its business and differentiate itself from competitors like SpaceX.

  • Tim details why he believes that Rocket Lab is poised to win significant U.S. government contracts for the Space Development Agency’s Proliferated Warfighter Space Architecture (SDA PWSA) Tranche 3 satellites due to its vertical integration, ability to meet schedules, and in-house satellite bus manufacturing capabilities, while legacy defense prime contractors face supply chain issues and challenges adapting to the new paradigm of small satellite constellations.

The Synergy of Earth Observation and AI: A Paradigm Shift in Understanding Our Planet

Emiliano Kargieman, CEO of Satellogic, has written a really interesting post on how the synergy of Earth observation and AI is set to revolutionize our understanding of the planet. Something I’ve touched on a few times.

He has posted a Twitter thread on the topic as well.

Russia Vetoes UN Resolution Banning Nuclear Weapons in Space

Tensions in the space domain continue to escalate as Russia vetoed a United Nations Security Council resolution on April 24 that aimed to reaffirm provisions in the Outer Space Treaty prohibiting the placement of nuclear weapons or other weapons of mass destruction in space. The resolution, drafted by Japan and the United States, was prompted by reports that Russia was developing a nuclear anti-satellite (ASAT) weapon capable of causing widespread damage to satellites in low Earth orbit and endangering astronauts.

As space becomes increasingly important from a defense perspective, with nations recognizing the critical role of satellites in modern warfare and national security, new opportunities are emerging for space companies. The growing demand for resilient and secure space infrastructure, as well as innovative technologies to counter potential threats, is driving investment and growth in the commercial space sector. New space companies that can provide solutions to these challenges may find themselves well-positioned to capitalize on the expanding defense market and contribute to the security and sustainability of the space domain.

Threats from Russia and China Drive Space Force's Commercial Space Reserve Initiative

As threats from Russia and China continue to grow in the space domain, the U.S. Space Force is taking steps to bolster its capabilities and resilience. One key initiative is the establishment of a Commercial Augmentation Space Reserve (CASR), which aims to scale up the use of commercial capabilities during a conflict.

The Space Force’s plan to create CASR could provide significant opportunities for new space companies. By opening the door for innovative startups and emerging space firms to contribute to national security efforts, the Space Force is fostering a more diverse and robust space ecosystem. As the service works on establishing clear contractual language, ensuring the reliability of commercial systems, and developing a framework for sharing threat information, new space companies that can meet these requirements may find themselves with a unique opportunity to partner with the Space Force and grow their businesses in the process.

U.S. Space Command Chief Warns of China's Rapid Advancements in Space

U.S. Space Command’s new leader, Space Force Gen. Stephen Whiting, has warned of China’s rapidly advancing space capabilities following meetings with his South Korean and Japanese counterparts. Key points:

  • China is the primary focus of U.S. Space Command, with Beijing developing counter-space weapons and using space to enhance its terrestrial forces
  • Japan’s new Space Operations Group is collaborating with the U.S. to improve space domain awareness and monitor threats, many of which emanate from China
  • The U.S. and Japan are partnering to launch new satellites for space monitoring, and Japan is preparing to field a deep-space radar to better understand China’s space activities
  • Chinese activities on the Moon are also being monitored, with the U.S. hoping there is no military component to these seemingly exploratory and scientific endeavors
  • The U.S. military has been collaborating and training in the space domain with Japan and South Korea to build deterrence and ensure uninterrupted access to space for their militaries and populations

As China continues to make rapid advancements in space, the U.S. and its allies are working together to monitor and counter potential threats, while also ensuring the peaceful use of space for scientific and exploratory purposes.

We’re making progress but we will need to make more.

China's Military Reorganization: Implications for Space Forces and Capabilities

China has reorganized its military, replacing the Strategic Support Force (SSF) with the new Information Support Force (ISF). This move has significant implications for China’s space forces and how they are commanded. Key points:

  • The Aerospace Force, which commands China’s space forces, is now the senior force among China’s military arms
  • The reorganization aims to improve operational efficiency, integration, and control over information warfare domains, including space
  • The move could influence satellite operations, space surveillance, protection of space assets, and anti-satellite capabilities
  • China has been expanding its space capabilities in areas like satellite reconnaissance, communications megaconstellations, and on-orbit servicing

The reorganization is the biggest for China’s military since 2015 and suggests an increased focus on the strategic importance of space and information warfare going forward. How exactly it plays out remains to be seen, but it will be important to monitor the implications for China’s space forces and capabilities.

U.S. and New Zealand Strengthen Space Cooperation with Inaugural Bilateral Space Dialogue

On April 12, 2024, the United States and New Zealand held their first bilateral Space Dialogue in Washington, D.C., marking a significant milestone in the 150th anniversary of their space relationship. The key outcomes of the dialogue include:

  • Emphasis on the growth of the commercial space sector and the changing role of government in commercial space activities
  • Intent to continue cooperation on issues such as launch, payloads, and space situational awareness
  • Potential for expanded cooperation on policy and regulatory interoperability related to commercial space
  • Discussions on opportunities to advance scientific education, research, and space cooperation
  • Recognition of New Zealand’s geographic advantages in enabling frequent and responsive launches for U.S. industry and government agencies which added “strategic resilience” to launch capacity
  • Signing of an updated Memorandum of Cooperation between the New Zealand Space Agency and the Federal Aviation Administration
  • Announcement of the first round of joint research projects between New Zealand research institutes and NASA centers, focusing on Earth observation
  • Appreciation for the internship opportunities provided by NASA and the NASA Jet Propulsion Laboratory to high-achieving New Zealand students
  • Launch of MethaneSAT, a unique partnership involving government, non-profit, academic, and commercial organizations from both countries

The dialogue also included a commercial roundtable, co-chaired by the New Zealand Minister for Space and the Director of the U.S. Department of Commerce’s Office of Space Commerce, which highlighted existing partnerships and opportunities for stronger bilateral cooperation between the two countries' commercial space sectors. You can read the full statement on the U.S. State Department’s website.