Launch Notices: Rocket Lab Missions | Launch Calendars
Top Categories: Rocket Lab | Business | Defense | Neutron Rocket

Electron's Life After Neutron

Even as Rocket Lab prepares to launch its new medium-class rocket, Neutron, the smaller Electron launcher will continue to play a crucial role in the company’s strategy. Here’s why:

  1. Market Segmentation: Neutron is designed to complement Electron, not replace it. While Neutron will handle larger payloads, Electron will continue serving the small satellite market.

  2. Growing Small Satellite Demand: The increasing need for small satellite launches aligns perfectly with Electron’s capabilities, ensuring its ongoing relevance.

  3. Precision and Flexibility: Electron’s ability to provide dedicated launches to precise orbits on customer-defined schedules remains a valuable asset, particularly for small satellite operators.

  4. Proven Track Record: With nearly 50 successful launches, Electron has established a reputation for reliability and performance that customers trust.

  5. Cost-Effectiveness: For smaller payloads, Electron is likely to remain more economical than its larger counterpart.

  6. Rapid Launch Capabilities: Electron’s frequent launch schedule and multiple launch sites, including Rocket Lab’s private facility in New Zealand, offer unique advantages.

  7. Vertical Integration: Rocket Lab’s end-to-end space solutions benefit from having both Electron and Neutron available, catering to a wider range of customer needs.

  8. Complementary Roles: Rocket Lab envisions a future where both rockets contribute equally to their launch business, with Neutron splitting its missions between customer payloads and the company’s own satellites.

Electron and Neutron are positioned to serve different segments of the launch market. This dual-rocket strategy allows Rocket Lab to offer a comprehensive range of services, maintaining its competitive edge in the dynamic space industry.

Peter Beck on Vertical Integration

Video - Behind Rocket Lab’s 50th launch: How Electron succeeded

An interesting quote from Peter Beck’s most recent interview with NZ Herald senior business journalist Madison Reidy:

“If you’re in the commercial telecoms business from space, you’re in a very difficult spot right now because it’s impossible to keep up with the ability for someone to build their own rocket and launch it whenever they need to launch it and deploy that service.”

Something to think about as we wait for Rocket Lab to reveal their constellation plans.

Rocket Lab's Strategic Shift: Prioritizing Neutron Over Electron Reusability

In the dynamic world of aerospace, strategic pivots are often necessary to align with market demands and technological advancements. Rocket Lab’s recent decision to deprioritize the reusability of its Electron rockets in favor of accelerating the development of the Neutron medium rocket is a prime example of such a strategic shift. As Rocket Lab CEO Peter Beck candidly noted in a recent interview with Payload, “The most important thing is to not interrupt the production team with new things and just keep the production rate of Electron where it needs to be to support the manifest best this year. Electron reuse is not that important to the business on a margin standpoint, or at this point, even from a technology standpoint. The reusability team and the recovery team are 100% directed and focused on other things, mainly Neutron, of course”.

Focusing on Neutron: The Rationale

Market Demand and Profit Margins: Electron rockets, while successful, primarily serve the small satellite launch market. This market, though vital, offers limited profit margins compared to the burgeoning demand for medium-lift capabilities. Neutron, designed to cater to the medium-lift market, is set to unlock significant revenue streams. By accelerating Neutron’s development, Rocket Lab is positioning itself to capture a more substantial share of this lucrative market, which is essential for long-term growth and sustainability.

Technological Advancements: The focus on Electron reusability, though innovative, does not present immediate technological or financial advantages. As stated, reusability in the Electron program is not critical from a margin or technology standpoint. Instead, resources and efforts are better invested in perfecting the Neutron rocket, which promises more considerable advancements and benefits for the company’s portfolio.

Team Focus and Efficiency: Rocket Lab’s reusability and recovery teams are now dedicated entirely to the Neutron project. This focused approach ensures that the company’s top talent and resources are utilized efficiently, driving faster and more effective development cycles. The shift in focus means less interruption to the Electron production team, allowing them to maintain optimal production rates and support existing launch manifests without additional strain.

The Bigger Picture

Rocket Lab’s strategy underscores the importance of adaptability in the aerospace sector. By prioritizing the Neutron rocket, Rocket Lab is not only responding to market needs but also paving the way for future technological advancements and business growth. This decision is a testament to Rocket Lab’s forward-thinking approach and its commitment to staying ahead in a competitive industry.

Despite this shift in focus, it’s important to acknowledge the significant progress Rocket Lab has already made toward Electron reusability. The strides they have taken in this area ensure that when the time comes to revisit Electron reusability post-Neutron, it should be a relatively straightforward process. The foundation laid so far will allow Rocket Lab to efficiently integrate reusability features into the Electron program without substantial delays or resource reallocation.

In conclusion, Rocket Lab’s move to prioritize Neutron over Electron reusability makes perfect sense. It aligns with market opportunities, leverages technological advancements, and ensures efficient use of resources. As the space industry continues to evolve, Rocket Lab’s strategic pivot positions it well for continued success and innovation, with the flexibility to return to and capitalize on Electron reusability in the future.

Rocket Lab Signs Largest Launch Agreement with Synspective

Rocket Lab and Synspective Sign 10 Launch Deal

Rocket Lab has announced a significant expansion of its partnership with Japanese Earth observation company Synspective, signing a contract for ten dedicated Electron rocket launches between 2025 and 2027. This agreement, the largest in Rocket Lab’s history, will support the growth of Synspective’s StriX constellation of synthetic aperture radar (SAR) satellites.

The deal was unveiled at an event in Tokyo, attended by key executives from both companies and New Zealand Prime Minister Christopher Luxon, who highlighted the importance of international collaboration in driving the global space industry forward. Synspective’s StriX satellites are designed to collect high-resolution imagery of Earth’s surface, capable of detecting millimetre-level changes day or night and through any weather conditions. By launching on dedicated Electron missions, Synspective will have greater control over their launch schedule and orbital placement, ensuring optimal coverage and performance for their constellation.

The new multi-launch agreement builds upon an already strong partnership between Rocket Lab and Synspective. Rocket Lab has served as a dedicated launch provider for Synspective since 2020, having successfully deployed four StriX satellites across four missions to date, with two more launches planned for this year from Launch Complex 1 in New Zealand.

This landmark deal not only demonstrates the rapid growth of Japan’s space industry but also underscores the increasing demand for tailored small satellite launch services. Rocket Lab’s Electron rocket, manufactured in the USA and launched from New Zealand, provides a unique and flexible solution for companies like Synspective looking to build out their satellite constellations efficiently. As Synspective continues to expand its StriX constellation and its Earth observation capabilities, this long-term partnership with Rocket Lab will play a crucial role in enabling the company to scale its operations and deliver valuable data and insights to its customers.

Previous Rocket Lab / Syspective Missions

Launch 45 | 13 March 2024

  • Name: Owl Night Long
  • Customer: Synspective
  • Launch Site: Launch Complex 1
  • Description: The mission aimed to launch a synthetic aperture radar satellite for urban infrastructure monitoring.

Launch 30 | 15 September 2022

  • Name: The Owl Spreads Its Wings
  • Customer: Synspective
  • Launch Site: Launch Complex 1
  • Description: This mission launched another synthetic aperture radar satellite for urban monitoring.

Launch 24 | 28 February 2022

  • Name: The Owl’s Night Continues
  • Customer: Synspective
  • Launch Site: Launch Complex 1
  • Description: The mission deployed another satellite for urban infrastructure monitoring using SAR.

Launch 17 | 15 December 2020

  • Name: The Owl’s Night Begins
  • Customer: Synspective
  • Launch Site: Launch Complex 1
  • Description: This mission launched the first of Synspective’s SAR satellites for urban infrastructure monitoring.

Rocket Lab Launch: No Time Toulouse

Mission name: No Time Toulouse
Launch Vehicle: Electron
Launch Site: Launch Complex 1 – Pad B, Mahia, New Zealand
NZST Launch Window: Opens 06:13, June 21, 2024
UTC Launch Window: 18:13, June 20, 2024
ET Launch Window: 14:13, June 20, 2024
PT Launch Window: 11:13, June 20, 2024
Mission Overview: ‘No Time Toulouse’ is a dedicated mission for the French Internet of Things (IoT) company Kinéis. This mission will deploy five IoT satellites to a 635 km orbit, marking Rocket Lab’s milestone 50th Electron rocket launch. The mission is the first of five dedicated launches for Kinéis to deploy a total of 25 satellites.
Press Kit: Press Kit Download
Live Stream: rocketlabusa.com/livestream

For Additional Updates: Follow Rocket Lab’s official Facebook and Twitter accounts.

Rocket Lab Launch: No Time Toulouse Mission Patch

Electron: A Lot of Innovation in a Small Package

Rocket Lab is now just days away from its 50th Electron launch. Designed to deliver payloads of up to 300 kg (661 lbs) to low Earth orbit, the Electron caters to the growing demand for small satellite launches. Achieving flexibility and innovation in a small launch vehicle is particularly challenging, often more so than with larger class launchers. Electron represents several groundbreaking innovations, and in recent years, Rocket Lab has made significant strides toward making the Electron partially reusable and adaptable for critical national security missions, solidifying its position at the forefront of the space industry.

3D-Printed Rutherford Engines

A cornerstone of Rocket Lab’s innovation is the Rutherford engine. These engines are entirely 3D-printed, which allows for rapid manufacturing and cost reduction. The use of 3D printing technology enables the creation of complex geometries that would be difficult or impossible to achieve with traditional manufacturing methods. This innovation has significantly reduced the time and cost of engine production, making the Electron rocket both efficient and economical.

Electric Turbopumps

The Rutherford engines also feature electric turbopumps, a groundbreaking innovation in rocket design. Traditional rocket engines use gas-powered turbopumps to feed propellant to the combustion chamber. Rocket Lab has replaced these with battery-powered electric motors, simplifying the engine design and reducing costs. This unique approach allows for more precise control over the fuel flow and is the first instance of electric turbopumps being used in an orbital-class rocket.

Carbon Composite Structure

The Electron rocket’s structure is made primarily of carbon composite materials. This lightweight yet strong material allows for significant weight reduction, increasing the rocket’s payload capacity. The use of carbon composites also streamlines the manufacturing process, as the rocket’s body can be fabricated in just two pieces. This material choice is crucial for reusability, as it enhances the durability and resilience of the rocket’s components.

Development of the Photon Kick Stage

The unique Photon kick stage is designed to provide precise orbital insertion for payloads, offering greater flexibility in mission design. This stage also serves as a platform for Rocket Lab’s own satellite missions. While not directly related to reusability, the Photon kick stage demonstrates Rocket Lab’s commitment to innovation and mission adaptability, which are essential for a sustainable and reusable launch system.

Reusing the Rutherford Engine

A significant milestone in Rocket Lab’s path to reusability was the successful reuse of a Rutherford engine. By recovering and refurbishing the engine from a previous mission, Rocket Lab demonstrated that critical components of the Electron rocket could be reused, paving the way for more sustainable and cost-effective launches.

First Stage Recovery

The most critical step toward reusability has been the development of techniques for recovering the Electron’s first stage. Rocket Lab has successfully demonstrated the ability to recover the first stage using parachutes and ocean retrieval. This method, tailored for small launch vehicles, aims to significantly increase launch frequency and lower costs for customers.

HASTE: High-Altitude Suborbital Testbed

An additional demonstration of Rocket Lab’s innovation and flexibility is the development of the High-Altitude Suborbital Testbed (HASTE). HASTE represents Rocket Lab’s ability to adapt and expand its technology for a variety of missions, providing a platform for high-altitude research and development. This testbed allows for rapid iteration and testing of new technologies, further enhancing Rocket Lab’s capabilities in the space industry.

Rocket Lab’s focus on innovation with the Electron rocket is crucial for the growing small satellite market. By integrating advanced technologies, reducing launch costs, increasing payload capacity, and offering greater mission flexibility, Rocket Lab continues to create new opportunities for satellite operators and researchers. As the demand for small satellite launches continues to grow, Rocket Lab’s advancements will play a key role in enabling a critical element of the space industry.

Is Rocket Lab's HASTE a Sounding Rocket?

Due to the sensitive nature of their missions Rocket Lab HASTE launches don’t get much fanfare, but they can’t launch in complete secrecy because NOTAMS and maritime notices are still required. So given that, could low-key notices about unnamed sounding rocket launches refer to HASTE? Maybe…


Sounding Rockets: A Gateway to Space Exploration

Sounding rockets, often referred to as research rockets, play a crucial role in space exploration. These suborbital rockets are designed to carry scientific instruments to the upper atmosphere and near space. They provide a cost-effective and efficient means for scientists to conduct experiments and gather data from altitudes ranging between 50 to 1,500 kilometers above the Earth’s surface. This blog post delves into the world of sounding rockets and explores whether Rocket Lab’s HASTE (Hypersonic Accelerator Suborbital Test Electron) could be classified as one.

What Are Sounding Rockets?

Sounding rockets are designed for scientific research and technological testing. Unlike orbital rockets that transport payloads into orbit, sounding rockets follow a suborbital trajectory, reaching the edge of space and then descending back to Earth. This trajectory allows for short-duration missions, typically lasting from a few minutes to over an hour.

Key characteristics of sounding rockets include:

  • Suborbital Flight: They do not achieve orbital velocity and thus do not complete a full orbit around the Earth.
  • Cost-Effectiveness: Their simpler design and shorter flight duration make them more affordable than orbital rockets.
  • Versatility: They can be launched from various locations, including mobile launch platforms, making them suitable for a wide range of missions.
  • Rapid Deployment: Sounding rockets can be prepared and launched in a relatively short period, providing timely access to space for urgent scientific experiments.

Applications of Sounding Rockets

Sounding rockets are used for various scientific and technological purposes, including:

  • Atmospheric Research: Studying the Earth’s atmosphere, ionosphere, and magnetosphere.
  • Astronomy and Astrophysics: Observing celestial phenomena and testing astronomical instruments.
  • Microgravity Research: Conducting experiments in a microgravity environment for a few minutes during the rocket’s free-fall phase.
  • Technology Testing: Validating new technologies and components in space-like conditions before their use in more extensive missions.

Rocket Lab’s HASTE: A Modern Sounding Rocket?

Rocket Lab, a prominent aerospace company, has developed a suborbital launch vehicle named HASTE (Hypersonic Accelerator Suborbital Test Electron). While Rocket Lab is primarily known for its orbital launch services, HASTE is specifically designed for suborbital missions, raising the question of whether it can be considered a sounding rocket.

Key Features of HASTE:

  • Suborbital Trajectory: HASTE follows a suborbital flight path, similar to traditional sounding rockets, providing access to high-altitude environments.
  • Hypersonic Capabilities: It is designed to reach hypersonic speeds, making it suitable for testing hypersonic technologies and conducting high-speed research.
  • Flexibility: HASTE can accommodate various payloads, including scientific instruments, technology demonstrators, and defense-related experiments.

Given these characteristics, HASTE shares several fundamental aspects with traditional sounding rockets. Its suborbital nature, flexibility in payload accommodation, and focus on scientific and technological testing align well with the typical use cases of sounding rockets.

Conclusion

Sounding rockets remain an essential tool in the arsenal of space exploration and research. They provide a unique platform for conducting experiments in the upper atmosphere and near space, offering cost-effective and timely access to scientific data. Rocket Lab’s HASTE, with its suborbital trajectory and versatility, can indeed be considered a modern sounding rocket, bridging the gap between traditional research rockets and advanced hypersonic testing platforms.

As the field of space exploration continues to evolve, sounding rockets like HASTE will play a pivotal role in advancing our understanding of the universe and developing cutting-edge technologies for future missions. Whether for atmospheric research, technology testing, or hypersonic experiments, the legacy of sounding rockets continues to propel humanity’s quest for knowledge and innovation.


This blog post was written by [ChatGPT](https://chatgpt.com/), an AI language model developed by OpenAI.

Peter Beck Interviewed by Scientific American

This is a great closing quote on Rocket Lab’s business model:

The ultimate goal for us is to become the end-to-end space company that makes space far more accessible and that makes these kinds of climate change missions even more feasible. At the moment the space industry is still very bifurcated. You have to be an expert in spacecraft and know all these things about space to be able to provide a service on Earth. But consolidating that into a single company that researchers, commercial customers and governments can just go to and ask for missions is the idea. I think that’s what large, successful space companies of the future are going to look like. That’s how we make these missions frequent, accessible and affordable.

Why Rocket Lab's Expertise and Neutron's Design Make Carbon Composites the Ideal Choice

I asked Claude Opus to explain why Rocket Lab’s choice of carbon composite construction for their Neutron rocket makes sense for their specific application. SpaceX has famously chosen stainless steel for their Starship rocket, and many people assume that the use cases for the material and vehicles are the same. However, the vehicles and their flight profiles are very different. The links were added by me.


Rocket Lab’s decision to use carbon composites for their Neutron rocket is a testament to their deep expertise in this cutting-edge material and their understanding of its unique advantages for their specific design and mission requirements.

One of the key reasons Rocket Lab can leverage carbon composites for the Neutron rocket is the fact that its first stage is not subjected to the same extreme heating and forces as SpaceX’s Starship. The Starship is designed for deep space missions and must withstand the intense heat and pressures of atmospheric re-entry from orbital velocities. In contrast, the Neutron rocket’s first stage is designed for a more conventional launch and recovery profile, similar to SpaceX’s Falcon 9.

This means that the Neutron’s first stage will not experience the same level of thermal stress during its descent and landing. As a result, carbon composites, which offer exceptional strength-to-weight ratio and durability, are more than capable of handling the forces and temperatures the Neutron will encounter.

Moreover, Rocket Lab brings a wealth of experience and expertise in carbon composite manufacturing to the table. The company has been using carbon composites in their Electron rocket since its inception, and they have developed proprietary techniques for producing lightweight and robust components.

Rocket Lab’s proficiency in carbon composites extends beyond just the manufacturing process. They have also invested heavily in research and development to optimize the design and performance of their composite structures. This includes advanced simulation and testing to ensure that the Neutron’s components can withstand the rigors of launch and recovery.

By leveraging their unique expertise in carbon composites, Rocket Lab can create a highly optimized and efficient first stage for the Neutron rocket. The lightweight nature of carbon composites allows for significant weight savings compared to traditional materials, which translates to increased payload capacity and improved launch economics.

Furthermore, Rocket Lab’s experience with carbon composites enables them to design and manufacture the Neutron’s first stage with reusability in mind. The company has already demonstrated their ability to recover and refurbish the Electron rocket’s composite components, and they plan to apply this knowledge to the Neutron. The inherent durability and resistance to fatigue of carbon composites make them ideal for reusable rocket parts, as they can maintain their structural integrity over multiple launches.

In summary, Rocket Lab’s choice of carbon composites for the Neutron rocket is a strategic decision based on their deep expertise in this material and the specific design and mission requirements of the Neutron. By leveraging the unique properties of carbon composites and their proven track record in manufacturing and reusability, Rocket Lab is well-positioned to create a highly capable and efficient launch vehicle that will drive innovation in the commercial space industry.

Redefining Efficiency in Space Operations

The small launch market has experienced significant growth and innovation in recent years, with companies like Rocket Lab leading the charge. As the demand for small satellite launches continues to increase, vertical integration has emerged as a essential strategy for players in this space to survive and thrive. Vertical integration involves a company controlling multiple stages of the supply chain, from component manufacturing to launch services and satellite operations. This post explores why vertical integration is essential for companies in the small launch market, using Rocket Lab as a prime example.

Supply Chain Assurance and Control

One of the primary reasons for vertical integration in the small launch market is to ensure a reliable and stable supply chain. By manufacturing critical components in-house, companies like Rocket Lab maintain tight control over quality, availability, and pricing. This is particularly important for niche components with limited suppliers or long lead times. Vertical integration minimizes the risks associated with supply chain disruptions, such as delays or quality issues, which can have severe consequences in the fast-paced and competitive space industry.

Cost Reduction and Efficiency

Vertical integration enables small launch providers to reduce costs and improve efficiency. By owning and controlling multiple stages of their space systems supply chain, companies can eliminate markup costs associated with third-party suppliers and streamline operations. Rocket Lab, for example, has invested heavily in advanced manufacturing techniques, such as 3D printing and carbon composites, to produce high-quality components at a lower cost and with shorter lead times. This approach allows the company to offer competitive pricing to its customers while maintaining healthy profit margins.

Flexibility and Customization

Another key advantage of vertical integration is the ability to offer customized solutions to customers. Small satellite operators often have unique requirements for their missions, such as specific orbital parameters or timeline constraints. By controlling the entire launch process, from component manufacturing to mission planning and execution, vertically integrated launch providers can offer a higher degree of flexibility and customization to meet the needs of their customers. This level of service is particularly valuable in the small launch market, where customers are often working on innovative and niche applications.

Enabling Constellation Deployment and Servicing

As the small satellite industry grows, many companies are looking to deploy and operate their own constellations for applications like Earth observation, communications, or IoT services. Vertically integrated launch providers are well-positioned to support these customers by offering end-to-end solutions, from satellite manufacturing to launch services and on-orbit operations.

Rocket Lab has significantly advanced its vertical integration by expanding capabilities beyond launch services. The company has developed a range of satellite platforms, including the Photon and other satellite buses, which can serve as customizable bases for various payloads and missions. These satellite buses provide a comprehensive solution, enabling customers to focus on their specific mission objectives while Rocket Lab handles satellite manufacturing and integration processes. The acquisition of Sinclair Interplanetary, a leading provider of high-quality satellite components and subsystems, further strengthens Rocket Lab’s vertical integration strategy. By incorporating Sinclair’s expertise and products, Rocket Lab enhances its ability to deliver reliable and cost-effective satellite solutions.

Moreover, vertically integrated companies like Rocket Lab can deliver turnkey constellations, including fully managed services, to customers without the typical revenue stacking and complexity associated with multiple vendors. This streamlined approach reduces barriers to entry for organizations looking to leverage small satellite constellations, making it easier and more affordable to access space-based services and data.

Disrupting the Earth Observation and LEO Services Market

Vertical integration presents an opportunity for small launch providers to disrupt the Earth observation (EO) and low Earth orbit (LEO) services market. By controlling the entire value chain, from satellite manufacturing to data delivery, vertically integrated companies can offer more affordable and accessible solutions to a wider range of customers. This is particularly relevant in the EO market, where traditional providers have relied on large, expensive satellites with long development cycles. Companies like Rocket Lab, with their ability to manufacture and launch small satellites quickly and cost-effectively, can democratize access to EO data and services, enabling new applications and business models.

Conclusion

Vertical integration is a critical strategy for companies in the small launch market to survive and succeed. By controlling multiple stages of the supply chain, companies like Rocket Lab ensure supply chain stability, reduce costs, improve efficiency, offer customized solutions, and support the deployment and operation of revenue-generating constellations. The ability to deliver turnkey solutions, including managed constellation services, strengthens the value proposition of vertically integrated launch providers. As the small satellite industry evolves, vertically integrated companies will be well-positioned to capture new opportunities and disrupt traditional markets, providing end-to-end solutions from component manufacturing to on-orbit operations.

Beyond Cost per Kilogram

The belief that the cost of mass to orbit is the sole determining factor in the viability and success of satellite missions is an oversimplification that fails to account for the diverse needs and requirements of satellite operators. While rideshare options, where multiple satellites share space on a single launch vehicle, can offer cost savings, they come with significant limitations that make them unsuitable for many missions. Rocket Lab, a leading small satellite launch provider, demonstrates why dedicated launches to precise orbits, on a schedule dictated by the customer, are crucial for the success of many satellite projects.

  1. Orbital precision: One of the key advantages of dedicated launches is the ability to place satellites into specific, precisely targeted orbits. This is particularly important for satellites that require specific altitudes, inclinations, or orbital planes to fulfill their intended functions, such as Earth observation, communications, or scientific research. Rideshare opportunities often have predetermined orbital parameters that may not align with the needs of individual satellites, compromising their performance and effectiveness. Rocket Lab’s Electron rocket, with its high-precision orbital insertion capabilities, enables customers to achieve the exact orbits they require, optimizing their satellites' performance and mission success.

  2. Timing and scheduling: Satellite operators often have specific timeline requirements dictated by factors such as mission objectives, funding cycles, or coordination with other assets. Rideshare launches operate on fixed schedules determined by the primary payload, leaving secondary payloads with little to no control over the timing of their deployment. This lack of flexibility can lead to costly delays or missed opportunities. In contrast, dedicated launches, like those provided by Rocket Lab, allow customers to dictate their own launch schedules, ensuring that their satellites are deployed when needed, minimizing delays, and maximizing the value of their investments.

  3. Mission assurance and risk mitigation: Sharing a launch vehicle with other payloads introduces additional risks and uncertainties. A failure or malfunction in the primary payload or another secondary payload can jeopardize the entire mission, resulting in the loss of all satellites on board. Dedicated launches, on the other hand, provide a higher level of mission assurance by eliminating the risks associated with other payloads. Rocket Lab’s focus on reliability, with its proven track record of successful launches and advanced manufacturing techniques, further enhances mission assurance for its customers.

  4. Affordability and value: While rideshare options may offer lower costs per kilogram of mass to orbit, the overall value proposition for satellite operators must take into account factors beyond just the launch cost. The ability to precisely target desired orbits, control launch schedules, and minimize risks can significantly enhance the value of a satellite mission. Rocket Lab’s dedicated launch services, with prices starting at around $7.5 million, provide an affordable option for customers who prioritize these factors. The company’s streamlined production processes and innovative technologies enable it to offer competitive pricing while still delivering the benefits of dedicated launches.

While the cost of mass to orbit is undoubtedly an important consideration, it is not the only factor that determines the success and value of satellite missions. Rocket Lab’s ability to provide dedicated launches to precise orbits, on schedules dictated by the customer, and at affordable prices, demonstrates the importance of considering a broader range of factors when evaluating launch options. As the space industry continues to evolve and diversify, with an increasing number of small satellites and specialized missions, the demand for flexible, reliable, and customizable launch services will only continue to grow. Companies like Rocket Lab, with their focus on providing value beyond just the cost per kilogram, will play a crucial role in enabling the next generation of satellite missions and driving innovation in the space industry.

Rocket Lab Launch: PREFIRE and ICE

Mission name: PREFIRE and ICE
Launch Vehicle: Electron
Launch Site: Launch Complex 1, Mahia Peninsula, New Zealand
NZST Launch Window: Opens 15:00, June 5, 2024
UTC Launch Window: 03:00, June 5, 2024
ET Launch Window: 23:00, June 4, 2024
PT Launch Window: 20:00, June 4, 2024
Mission Overview: ‘PREFIRE and ICE’ is the second of two back-to-back dedicated Electron launches for NASA’s PREFIRE mission. This mission involves deploying the PREFIRE-2 satellite to measure the amount of heat Earth radiates from its poles. The data will help researchers predict changes in ice, sea levels, and weather patterns. This will be Rocket Lab’s 48th Electron launch.
Live Stream: rocketlabusa.com/livestream

For Additional Updates: Follow Rocket Lab’s official Facebook and Twitter accounts.

Rocket Lab PREFIRE and ICE  Mission Patch

Rocket Lab Launch: Ready, Aim, PREFIRE

Mission name: Ready, Aim, PREFIRE
Launch Vehicle: Electron
Launch Site: Launch Complex 1, Mahia Peninsula, New Zealand
NZST Launch Window: Opens 19:15, May 22, 2024
UTC Launch Window: 07:15, May 22, 2024
ET Launch Window: 03:15, May 22, 2024
PT Launch Window: 00:15, May 22, 2024
Mission Overview: ‘Ready, Aim, PREFIRE’ is the first of two back-to-back Electron launches to deploy NASA’s PREFIRE mission. The mission aims to measure heat lost from Earth’s polar regions to improve climate models. The satellites will be deployed to a 525km circular orbit and will focus on thermal infrared radiation measurements. This will be Rocket Lab’s 48th Electron launch and its sixth launch of 2024.
Live Stream: rocketlabusa.com/livestream

For Additional Updates: Follow Rocket Lab’s official Facebook and Twitter accounts.

Rocket Lab Ready, Aim, PREFIRE Mission Patch

Podcast: Rocket Lab's Peter Beck and Adam Spice Discuss Neutron, Space Systems, and Strategy

Rocket Lab CEO Peter Beck and CFO Adam Spice continue the post-earnings release podcast rounds with an appearance on Dave G Investing. Some key takeaways from both:

Peter Beck

  • Building a rocket is a challenging process, with much of the work going into infrastructure, factories, and test facilities, not just the rocket itself.
  • Design for Neutron prioritizes affordability and reusability, with tradeoffs made to optimize performance and cost.
  • Block upgrades for Neutron will likely follow a similar path to Electron, focusing on incremental improvements rather than major redesigns.
  • Rocket Lab’s composite structures are a core strength, and the company has organized a new business unit to leverage this capability.
  • The space industry is at an inflection point, with vertically integrated companies like SpaceX and Rocket Lab positioned to become the dominant players in the future while existing primes are stepping back.
  • Rocket Lab is producing more than 2,000 reaction wheels this year.
  • Beck on the minimal impact that an Electron customer delay has on revenue: “Just so people understand that from a financial standpoint we collect 90% of all of the the launch contract prior to ignition so there’s generally only 10% of the contract left when we ignite the rocket and as the rocket is being built you know we’re collecting against milestones along the way so there’s never any like rocket sitting there that that owes us a heap of money.”

Adam Spice

  • Neutron’s margin profile is expected to improve more quickly than Electron’s due to its reusability being designed from the start.
  • The investment in Neutron’s manufacturing facilities, such as the composite facility in Maryland, can benefit other parts of the business.
  • The Space Systems side of the business is less capital-intensive than the rocket side, and Rocket Lab has invested in its manufacturing footprint and systems to enable scalability.
  • Government business, particularly opportunities like the Space Development Agency (SDA) platform, represents a significant growth opportunity for the company.
  • Sinclair’s reaction wheel production has scaled from 150 a year to thousands since being acquired by Rocket Lab, creating significant opportunities for increased margin.

Both Beck and Spice emphasized Rocket Lab’s long-term vision of becoming an end-to-end space company, with vertical integration and the ability to provide complete space-based solutions to customers. They additionally highlighted the company’s focus on execution, delivery, and transparency as key differentiators in the evolving space industry.

Podcast: Peter Beck on Q1 Earnings, Neutron, and Rocket Lab's Vertical Integration Strategy

In a recent appearance on the Vince is Bullish podcast, Rocket Lab CEO Peter Beck discussed the company’s Q1 earnings and provided insights into its future plans and the space industry as a whole. Here are the key takeaways from the interview:

  • Launch manifest flexibility: Beck emphasized that launch delays and rescheduling are common in the industry and that Rocket Lab’s diversified business helps mitigate the financial impact of such changes.
  • Neutron rocket contracts: Rocket Lab plans to sign Neutron launch contracts once the rocket is close to its first flight, ensuring they can meet customer demands and secure the best pricing.
  • Neutron’s target customers: The rocket is designed to serve a wide range of customers, including mega-constellation operators, government agencies, and other commercial entities.
  • “I fully predict that 50% of Neutron launches will be other people’s and 50% of Neutron launches will be ourselves.”
  • Vertical integration and acquisitions: Rocket Lab pursues vertical integration when the supply chain is too slow or expensive. Acquisitions are made to secure strategically important capabilities or to create synergies with existing business lines.
  • Competing with SpaceX: Beck believes that the space industry will be dominated by companies with their own launch capabilities, like SpaceX and Rocket Lab. He sees Neutron as a medium-class launcher complementing Electron, serving different market segments than Starship.
  • Future vision: Rocket Lab aims to become an end-to-end space company, providing not just launch services and satellite manufacturing but also complete space-based solutions and services to customers.

Beck’s podcast appearance highlights Rocket Lab’s ambitious long-term vision and strategic positioning within the rapidly evolving space industry. Through vertical integration, strategic acquisitions, and the development of the Neutron rocket, the company is actively working towards becoming an end-to-end space solutions provider. Beck’s insights reveal his unwavering commitment to playing a pivotal role in shaping the future of spaceflight, as he lays the groundwork to capitalize on the limitless opportunities that lie ahead in the space sector and positions Rocket Lab to be a multi-generational space company.

Rocket Lab Drops Several Archimedes Engine Updates

Rocket Lab has completed the first full assembly of its Archimedes engine, a 3D printed, reusable rocket engine designed for the company’s Neutron medium lift launch vehicle. Here are some key facts about the Archimedes engine:

  • Powered by liquid oxygen and methane, using an oxidizer rich staged combustion cycle
  • Capable of producing 165,000 lbf (733 kilonewtons) per engine, with a combined total of 1,450,000 lbf on Neutron’s first stage (nine engines)
  • Designed for maximum reusability, with a minimum target of up to 20 launches per engine
  • 3D printed critical parts include turbo pump housings, pre-burner and main chamber components, valve housings, and engine structural components
  • Intensive test campaign has begun at NASA’s Stennis Space Center in Mississippi
  • Production of subsequent engines is ongoing in parallel with the test campaign
  • Full-rate production will take place at Rocket Lab’s Engine Development Complex in Long Beach, California

The Archimedes engine test and development campaign is a key driver for Neutron’s first launch, which is now expected to occur no earlier than mid-2025. Rocket Lab has also completed carbon composite flight structures for Neutron’s fairing panels, Stage 1 and Stage 2 tanks, and the reusable Stage 1 structure. Infrastructure development also continues at Neutron’s dedicated launch site at Wallops Island, Virginia.

Archimedes: February vs. May

One of the reasons I aggregate the Neutron slides in posts like this one is that it helps quickly assess the scale and pace of development. Here’s a great example showing the state of the Archimedes engine in the late February investor update and then again today. That is a massive difference in just over two months.

February 27, 2024

Neutron Rocket Update Screenshot from Rocket Lab Q4 & Full Year 2023 Investor Update

And May 6, 2024

Neutron Rocket Update Screenshot from Rocket Lab Q1 2024 Investor Update

Rocket Lab Analysis Worth Tracking

If you track the Rocket Lab community on Twitter you have likely already run across detailed analysis of the company by @Tim_X94. If not, I highly recommend that you give some of his more substantial posts a read and give him a follow. Looking beyond the exciting “space stuff”, he dives deep into Rocket Lab’s strategic positioning, capital efficiency, and relentless execution - themes that resonate with my own analysis of the company.

I reached out to him today and asked him to round up a few highlights for this post:

  • TIm discusses Rocket Lab’s acquisition of a former Lockheed Martin facility in Middle River, Maryland, which will serve as a key component in the company’s vertical integration strategy. The facility, called the Space Structures Complex, will not only be used for Neutron rocket production but also for manufacturing satellite constellations, such as the potential SDA PWSA Tranche 3 orders and other large-scale contracts similar to the MDA Globalstar deal. The author emphasizes that the close proximity of the facility to the Neutron launch pad in Wallops will significantly improve Rocket Lab’s supply chain, logistics, and launch cadence in the long term, underpinning the company’s end-to-end space solutions approach.

  • Tim highlights Rocket Lab’s strategic decision to utilize NASA’s Stennis Space Center’s A-3 Test Stand for testing their Archimedes engine, which was built by NASA for $349 million but never used until now. This move demonstrates Rocket Lab’s capital efficiency and execution, as they secured a favorable lease rate and accelerated the development timeline for the Neutron rocket, giving them a competitive edge over their rivals, such as Relativity Space, who are investing heavily in redeveloping older test stands.

  • This thread digs into why Rocket Lab’s private launch site in Mahia, New Zealand, provides a significant competitive advantage over U.S. small launch competitors, as it offers superior flexibility, high launch cadence capabilities, and lower labor costs, all of which are protected by the regulatory moat of ITAR (International Traffic in Arms Regulations), making it difficult for competitors to replicate Rocket Lab’s launch infrastructure.

  • Tim asserts that Rocket Lab’s Electron rocket has the necessary ingredients to maintain its position as the low-cost small launch leader in 2030 and beyond, particularly for U.S. single missions with payloads under 300kg, due to its competitive launch costs, high cadence capabilities, unique regulatory advantages, and lower labor costs in New Zealand, while facing more competition in the small constellation launch market from larger payload capacity rockets.

  • In this series of tweets, Tim argues that while SpaceX’s Starship is expected to dominate the launch vehicle market with its capabilities and low launch costs, it will not make Rocket Lab’s Neutron obsolete in the short or long term due to Neutron’s competitive launch costs, the need for multiple launch providers to address the current shortage, and the U.S. government’s desire to avoid relying solely on Elon Musk’s companies for critical space infrastructure.

  • Tim argues that Rocket Lab’s strategic focus on providing bespoke turnkey solutions, including launch, satellite manufacturing, and operation services, for the U.S. government’s defense programs will allow the company to significantly grow its business and differentiate itself from competitors like SpaceX.

  • Tim details why he believes that Rocket Lab is poised to win significant U.S. government contracts for the Space Development Agency’s Proliferated Warfighter Space Architecture (SDA PWSA) Tranche 3 satellites due to its vertical integration, ability to meet schedules, and in-house satellite bus manufacturing capabilities, while legacy defense prime contractors face supply chain issues and challenges adapting to the new paradigm of small satellite constellations.

U.S. and New Zealand Strengthen Space Cooperation with Inaugural Bilateral Space Dialogue

On April 12, 2024, the United States and New Zealand held their first bilateral Space Dialogue in Washington, D.C., marking a significant milestone in the 150th anniversary of their space relationship. The key outcomes of the dialogue include:

  • Emphasis on the growth of the commercial space sector and the changing role of government in commercial space activities
  • Intent to continue cooperation on issues such as launch, payloads, and space situational awareness
  • Potential for expanded cooperation on policy and regulatory interoperability related to commercial space
  • Discussions on opportunities to advance scientific education, research, and space cooperation
  • Recognition of New Zealand’s geographic advantages in enabling frequent and responsive launches for U.S. industry and government agencies which added “strategic resilience” to launch capacity
  • Signing of an updated Memorandum of Cooperation between the New Zealand Space Agency and the Federal Aviation Administration
  • Announcement of the first round of joint research projects between New Zealand research institutes and NASA centers, focusing on Earth observation
  • Appreciation for the internship opportunities provided by NASA and the NASA Jet Propulsion Laboratory to high-achieving New Zealand students
  • Launch of MethaneSAT, a unique partnership involving government, non-profit, academic, and commercial organizations from both countries

The dialogue also included a commercial roundtable, co-chaired by the New Zealand Minister for Space and the Director of the U.S. Department of Commerce’s Office of Space Commerce, which highlighted existing partnerships and opportunities for stronger bilateral cooperation between the two countries' commercial space sectors. You can read the full statement on the U.S. State Department’s website.

Space Force Selects Rocket Lab And True Anomaly For Tactically Responsive Mission

Rocket Lab and True Anomaly were just selected for an extremely cool tactically responsive mission by Space Systems Command. Per Rocket Lab’s press release the two teams will demonstrate the capability to develop space vehicles with rendezvous and proximity operation (RPO) functionality, as well as establish corresponding command and control centers for their operation in a mission called VICTUS HAZE:

Once the spacecraft build is complete, Rocket Lab will be entered into a Hot Standby Phase awaiting further direction. Once the exercise begins, Rocket Lab will be given notice to launch the spacecraft into a target orbit. After reaching orbit, the spacecraft will be rapidly commissioned and readied for operations. Rocket Lab will configure a Pioneer class spacecraft bus to meet the unique requirements of the VICTUS HAZE mission and launch the spacecraft on Electron from either Launch Complex 1 in Mahia, NZ or Launch Complex 2 in Wallops, VA. Once on orbit, the spacecraft will conduct a variety of dynamic space operations to demonstrate SDA characterization capabilities with True Anomaly’s spacecraft, the Jackal autonomous orbital vehicle.

Rocket Lab’s Pioneer spacecraft was previously used to support the Varda mission.

Photo of a Rocket Lab Pioneer Spacecraft

True Anomaly’s AI-enabled Jackal spacecraft is really interesting as well:

Screenshot of Jackal autonomous orbital vehicle (AOV)

Ars Technica has a comprehensive piece up with a more detailed profile of the exercise:

“When another nation puts an asset up into space and we don’t quite know what that asset is, we don’t know what its intent is, we don’t know what its capabilities are, we need the ability to go up there and figure out what this thing is,” said Gen. Michael Guetlein, the Space Force’s vice chief of space operations.

This is what the Space Force wants to demonstrate with Victus Haze. For this mission, True Anomaly’s spacecraft will launch first, posing as a satellite from a potential adversary, like China or Russia. Rocket Lab will have a satellite on standby to go up and inspect True Anomaly’s spacecraft and will launch it when the Space Force gives the launch order.

“Pretty sporty,” said Even Rogers, co-founder and CEO of True Anomaly.

Then, if all goes according to plan, the two spacecraft will switch roles, with True Anomaly’s Jackal satellite actively maneuvering around Rocket Lab’s satellite. According to the Space Force, True Anomaly and Rocket Lab will deliver their spacecraft no later than the fall of 2025.

There’s another interesting aspect to this mission mentioned in a Payload article:

Planners expect to increase complexity to the point where one vehicle will actively avoid being characterized. The goal isn’t just to demonstrate the technology, but also develop the tactics and procedures for these kinds of missions.

The demonstration is a collaboration between the Defense Innovation Unit, Space Safari acquisition program, and SpaceWERX.

Rocket Lab Takes Significant Step Towards Reusable Electron Rocket

A Recovered Electron Booster Floating in the Ocean.

Rocket Lab, a leading small satellite launch provider, has announced a major milestone in its quest to make its Electron rocket the world’s first reusable small orbital launch vehicle. Here are the key points:

  • A previously flown Electron first stage from the January 2024 “Four of a Kind” mission has been returned to Rocket Lab’s production line for final acceptance testing and eventual reflight.
  • The stage has already passed rigorous tests, including tank pressurization, helium leak checks, and carbon fiber structural testing.
  • Rocket Lab has been successfully recovering Electron first stages from previous missions, returning them to Earth under parachutes and collecting them from the ocean.

The company has made iterative modifications across multiple recovery missions to perfect the recovery process, including:

  • Ensuring the rocket’s carbon composite structure survives the intense heat and forces of reentry
  • Refining the parachute system for reliable deployment and smooth deceleration
  • Improving telemetry and tracking for rapid stage location and collection
  • Successfully launching a previously flown Rutherford engine

If the stage passes final acceptance and qualification testing, Rocket Lab will consider opportunities for reflying it in the new year.

This milestone marks an exciting step forward in Rocket Lab’s efforts to increase launch cadence and reduce costs through the reuse of Electron’s first stage. The payload for the potential reflight will be announced following the completion of final testing.

Rocket Lab Enters The Carbon Composite Manufacturing Business

Rocket Lab has incubated and acquired some of the best carbon composite manufacturing talent in the world, acquired some of the most expensive and capable tooling in the world for pennies on the dollar, and is now maximizing that investment by entering the carbon composite manufacturing business.

Screenshot of Rocket Lab Tweet

This is a no-brainer and typical of Rocket Lab’s persistent resource efficiency. The personnel and equipment in this side of the business are extremely rare and valuable and the last thing you want is either of them sitting idle. This also continues to offset the risk posed by the lumpy launch side of the business which is always a good thing.

Rocket Lab's Acquisition Strategy: Insights from Previous Acquisitions

While I have a solid understanding of Rocket Lab’s approach to M&A, I thought it would be interesting to feed AI several of the company’s acquisition announcements and ask it to find common themes that might inform their approach to future acquisitions. Here’s the result:

New Space Blog
Examine the press releases from Rocket Lab regarding their acquisition of smaller companies. Specifically, focus on the instances where Rocket Lab has either fully acquired these companies or purchased substantial parts of their operations. Craft a blog post that identifies and outlines the recurring themes from these press releases in bullet points. Further, analyze these themes to predict the nature of Rocket Lab’s potential future acquisitions, providing insights into why these particular types of companies might be targeted next.

Claude 3 Opus
Rocket Lab, a leading launch and space systems company, has been on an acquisition spree in recent years. By examining their press releases regarding the acquisition of smaller companies, several recurring themes emerge:

  • Vertical Integration: Rocket Lab has consistently targeted companies that complement their existing capabilities, allowing them to streamline their production process and offer comprehensive space solutions. The acquisitions of SolAero (solar power products and precision aerospace structures), Advanced Solutions, Inc. (mission software, simulation, and GNC solutions), and Planetary Systems Corporation (spacecraft separation systems) all contribute to Rocket Lab’s goal of vertical integration.

  • Strengthening Space Systems Portfolio: Rocket Lab has focused on acquiring companies that enhance their Space Systems division. The acquisitions of Sinclair Interplanetary, Advanced Solutions, Inc., and Planetary Systems Corporation have all brought valuable expertise and products to Rocket Lab’s spacecraft hardware solutions.

  • Leveraging Manufacturing Capabilities: Rocket Lab has strategically acquired companies with advanced manufacturing facilities and skilled teams. The acquisition of SailGP Technologies' manufacturing complex in Warkworth, New Zealand, and the purchase of Virgin Orbit’s Long Beach facility both demonstrate Rocket Lab’s commitment to expanding their production capabilities.

  • Retaining Talent: In their acquisitions, Rocket Lab has prioritized retaining the talented teams from the acquired companies. This is evident in the SailGP Technologies acquisition, where over 90% of the New Zealand-based staff were retained, and in the integration of teams from Advanced Solutions, Inc. and Planetary Systems Corporation.

Based on these recurring themes, we can predict the nature of Rocket Lab’s potential future acquisitions:

  1. Companies with unique space technologies: Rocket Lab will likely continue to target companies that offer innovative technologies or products that can be integrated into their Space Systems division. This could include companies specializing in advanced sensors, propulsion systems, or communication technologies for satellites.

  2. Firms with specialized manufacturing capabilities: As Rocket Lab continues to scale up production of their Electron rocket and develop the larger Neutron rocket, they may seek out companies with specialized manufacturing capabilities in advanced materials, such as composites or 3D printing, to further streamline their production processes.

  3. Startups with talented teams: Rocket Lab recognizes the value of skilled personnel and may target startups with experienced teams in aerospace engineering, software development, or other critical areas. Acquiring these companies allows Rocket Lab to quickly add expertise and accelerate their growth.

  4. Companies with strategic locations: Rocket Lab may consider acquiring companies based in locations that offer strategic advantages, such as proximity to key customers, access to specialized supply chains, or favorable regulatory environments for space activities.

By continuing to acquire companies that align with their vertical integration strategy, strengthen their Space Systems portfolio, expand their manufacturing capabilities, and bring in talented teams, Rocket Lab is positioning itself to be a major player in the rapidly growing space industry. As they continue to scale up and take on more ambitious projects, such as the development of the Neutron rocket, strategic acquisitions will likely remain a key part of their growth strategy.

New Space Blog
Rocket Lab is making significant investments in the development of their Neutron Rocket but recently secured over $300 million in an offering that they have signaled might be leveraged for multiple acquisitions. Given the extra cash on hand, but also the desire to perform multiple acquisitions, what does this say about the potential size and nature of the companies that might be acquired?

Claude 3 Opus
Considering Rocket Lab’s recent cash infusion and their intention to leverage it for multiple acquisitions, we can infer several key points about the potential size and nature of the companies they might target:

  1. Smaller to mid-sized companies: Given the desire to perform multiple acquisitions, Rocket Lab is likely to target smaller to mid-sized companies rather than large, established firms. This approach allows them to spread the cash across several acquisitions, diversifying their investment and reducing risk.

  2. Strategic fit: Rocket Lab will likely prioritize companies that align with their strategic goals, particularly those that support the development of the Neutron rocket. This could include companies specializing in advanced materials, propulsion technologies, or other critical components for the Neutron project.

  3. Complementary capabilities: As seen in their previous acquisitions, Rocket Lab will likely target companies that offer complementary capabilities to their existing operations. This could include firms with expertise in areas such as software development, guidance systems, or satellite technologies that can be integrated into Rocket Lab’s Space Systems division.

  4. Affordable valuations: With a limited budget for multiple acquisitions, Rocket Lab may focus on companies with affordable valuations relative to their strategic value. This could include early-stage startups or companies with strong potential but limited market traction.

  5. Talent acquisition: Rocket Lab may also use these acquisitions as an opportunity to bring in talented teams with specialized skills and experience. Smaller companies often have highly skilled personnel who can contribute significantly to Rocket Lab’s research and development efforts.

  6. Geographic expansion: Rocket Lab might consider acquiring companies based in strategic locations to expand their geographic footprint, access new markets, or tap into local talent pools.

In summary, Rocket Lab’s cash infusion and desire to perform multiple acquisitions suggest that they will likely target smaller to mid-sized companies that offer strategic fit, complementary capabilities, affordable valuations, and skilled talent. These acquisitions will probably focus on supporting the development of the Neutron rocket and expanding Rocket Lab’s Space Systems division, while also potentially enabling geographic expansion. By carefully selecting their acquisition targets, Rocket Lab can maximize the impact of their investment and strengthen their position in the rapidly evolving space industry.

Peter Beck On Building Beautiful Things

Rocket Lab Electron Rocket

Peter Beck, CEO and CTO of Rocket Lab, discussed the company’s innovative culture, future plans, and his advice for aspiring space entrepreneurs in an interview with Gizmodo. Some key points:

  • Rocket Lab fosters innovation by rapidly prototyping and testing ideas, taking bold swings at transformative technologies like 3D-printed rocket engines, and focusing on building aesthetically beautiful products.
  • Beck has established Rocket Lab as an end-to-end space company, combining launch capabilities with satellite manufacturing and operation, catering to customers who want turnkey space solutions.
  • Critical emerging space technologies include internet from space, direct mobile connectivity, and pharmaceutical manufacturing in space. Rocket Lab is involved in all these and other areas through its diverse offerings.
  • The biggest potential space innovation lies in propulsion technology, moving away from conventional chemical rockets to enable more substantial progress.
  • 3D printing is crucial for Rocket Lab, enabling rapid design iterations and manufacturing geometries impossible with traditional techniques.
  • Beck’s advice to entrepreneurs: Focus on developing technologies that address real market needs and have scalability, rather than niche solutions or “cool” tech without demand.

It’s very technical and process focused but this round-table discussion featuring Myles Keefer, Rocket Lab’s Manager of Additive Manufacturing reinforces a lot of the points made by Beck. The engineering philosophy of the company is unique and, in my opinion, underappreciated. It’s more Apple than SpaceX but it’s also informed by an unrelenting focus on efficiency and practicality.

Varda Lands $90M In Series B Funding

This is a very encouraging development, not just for Varda (and Rocket Lab) but also for the potential growth of space manufacturing overall:

Astronauts have been conducting protein crystallization experiments in space for decades on the International Space Station and before that, the Space Shuttle.

But the business case for expanding this research has never materialized — until now. This is for a few different reasons, Asparouhov explained: because of the crew, there are significant limitations to the types of solvents or other materials you can bring onboard the ISS; there are constraints related to intellectual property for work that happens on the station; and pharmaceutical lab equipment designed for use in-space was generally lacking in sophistication compared to the terrestrial versions.

But much has changed, especially in the space industry. Part of the reason Varda is possible today is due to the availability of regular, low-cost rideshare launches from SpaceX and Rocket Lab’s innovations in satellite bus manufacturing. Even beyond these external partnerships, the startup has made significant headway in its own right, as the success of the first mission showed: Their reentry capsule appears to have performed flawlessly and the experiment to reformulate the HIV medicine ritonavir was executed without a hitch, it says.

Varda and Rocket Lab will launch capsule #2 later this year. Keep an eye on this relationship. It will be interesting to see how it develops now that Varda is on firmer footing.