Launch Notices: Rocket Lab Missions | Launch Calendars
Top Categories: Rocket Lab | Business | Defense | Neutron Rocket
Neutron Rocket Development: 2024 Updates

Madison Reidy's Deep Dive on Neutron

NZ Herald senior business journalist Madison Reidy has released a two video deep dive on Rocket Lab’s progress with Neutron that is a must watch. The first, an interview with Peter Beck, is particularly interesting as it cuts through a lot of the disinformation and tribalism that has plagued the space community on Twitter.

Space Will Not Be Monopolized

A reminder that an effective monopoly can exist at the point of invention or market creation but that it will not be allowed to persist.

Competition is a concern when it comes to companies operating in low-Earth orbit, Federal Communications Commissions Chairwoman Jessica Rosenworcel said Wednesday, referring specifically to Starlink, the satellite internet constellation operated by SpaceX and its CEO, Elon Musk.

During a FedScoop-moderated discussion at the Global Aerospace Summit in Washington, D.C., Rosenworcel said that in her time leading the FCC, one thing that’s become clear to her is that “every communications market that has competition is stronger.”

She added, “We see lower prices and more innovation, and honestly, space should be no exception. So we do have one player that’s almost two-thirds of the satellites that are in space right now, and has a very high portion of internet traffic. And the way I see it is, our economy doesn’t benefit from monopolies.”

SpaceX’s Starlink constellation, which now has thousands of satellites in low-Earth orbit, has run into a series of hurdles at the FCC, which oversees satellite licenses and the spectrum the company uses. For example, back in 2022, the agency rescinded a nearly $1 billion subsidy focused on rural broadband. More recently, AT&T and Verizon have raised opposition to waivers, sought by SpaceX and T-Mobile, for out-of-band emissions limits.

Rocket Lab Insights from Morgan Stanley's 12th Annual Laguna Conference

On September 11, 2023, Kristine Liwag, Executive Director and Head of Aerospace & Defense Equity Research at Morgan Stanley, hosted a discussion with Adam Spice, Chief Financial Officer of Rocket Lab. This conversation took place during Morgan Stanley’s 12th Annual Laguna Conference.

The discussion provided insights into Rocket Lab’s current market position, launch capabilities, and ambitious plans for the future. Spice shared details about the company’s flagship Electron rocket, the development of the new Neutron launch vehicle, and Rocket Lab’s strategies for growth in the competitive space launch and systems market.

Rocket Lab’s Market Position, Launch Capabilities, and Future Plans

  • Rocket Lab’s Electron is the second most used launch vehicle in the U.S., offering affordable small dedicated launches at around $8 million compared to $40-$50 million for previous competitors in the space.

  • Rocket Lab is developing Neutron, a new medium-class rocket, to provide an alternative to SpaceX’s Falcon 9, aiming to launch it by mid-2025.

  • The demand for small dedicated launches is growing, with Rocket Lab having a backlog of over 36 Electrons and planning 15-18 launches this year.

  • Electron is also being used for hypersonic test campaigns, which is the fastest-growing part of Rocket Lab’s launch portfolio.

  • Neutron aims to provide a cost-effective and optimized medium-class launch solution, leveraging Rocket Lab’s experience with Electron.

  • SpaceX currently has a monopoly on medium-class launches, making it uncomfortable for government and commercial customers who need alternatives.

  • Neutron is designed to offer different payload capacities depending on the mission, with a maximum of 15 tons expendable and 8 tons reusable back to the pad.

  • Customers face long waiting lists for Falcon 9 launches (up to 2 years), highlighting the need for more launch capacity in the market.

  • Rocket Lab’s Electron has launched 52 times with a great success rate, and this heritage is expected to help build a healthy backlog for Neutron.

  • The launch business is very fixed-cost intensive, making launch cadence a critical factor for profitability.

  • Rocket Lab has the capacity to scale up to a realistic 50 Electron launches per year, with facilities in New Zealand and Virginia.

  • The market has seen a significant increase in satellite launches, primarily driven by SpaceX’s Starlink, but this has been limited to one provider.

  • Future opportunities for growth in the launch market include government platforms and new constellations like Amazon’s Kuiper.

  • Rocket Lab receives most (~90%) of the cash up front before launches, making revenue recognition lumpy but providing financial stability.

Rocket Lab’s Growth, Pricing Strategy, and Future Plans in the Space Launch and Systems Market

  • The company has seen a steady increase in ASPs from $5 million in 2018 to $8.2 million currently, with production costs decreasing due to efficiencies in BOM, labor hours, and amortization of buildings and machinery.

  • The company aims to achieve a gross margin of 45-50 points by increasing launch frequency to two per month, with reusability potentially adding 500 basis points of margin improvement.

  • The switch from helicopter to ocean recovery for rockets was driven by cost and operational efficiency, allowing for more recoverable launches.

  • Revenue recognition for launches is challenging due to its point-in-time nature, but the company maintains a positive working capital model by collecting most of the cash in advance.

  • The company anticipates normal lumpiness in revenue due to the dependency on customer payload readiness, which can be delayed by technical issues.

  • Pricing for Electron rockets has increased to $8.2 million, with limited competition in the small launch market, allowing for potential further price increases.

  • The company is focusing on volume over maximizing ASP to achieve better margins, aiming for a 40-50% gross margin with Electron launches.

  • Neutron’s sales strategy differs from Electron’s, with less pricing pressure in the medium launch market, and aims to avoid low-dollar value backlogs.

  • The space systems business has grown rapidly, becoming a prime contractor for U.S. government missions and developing capabilities for sophisticated spacecraft.

  • The company’s long-term vision includes deploying its own payloads using Neutron, similar to SpaceX’s model, to create recurring revenue streams.

  • Neutron is seen as the key enabler for future constellation opportunities, with the company aiming to provide end-to-end solutions from spacecraft design to data management.

  • The company is open to inorganic growth opportunities in the applications market, leveraging its capabilities to support constellation operators.

Rocket Lab Q2: End-to-End Space Strategy Advances Across Launch and Systems

I fed Claude Sonnet 3.5 Rocket Lab’s latest earnings presentation and asked it to analyze the results.


Rocket Lab has released its Q2 2024 earnings report, revealing significant growth and progress across multiple fronts. This quarter marks a pivotal moment for the company, demonstrating its increasing prominence in the commercial space sector and its ambitions to become a fully integrated end-to-end space company.

Record-Breaking Revenue and Growth

The standout figure from this earnings report is Rocket Lab’s record-breaking quarterly revenue of $106 million. This represents a substantial 71% year-on-year increase and a 15% quarter-on-quarter growth. Such impressive financial performance underscores Rocket Lab’s expanding market share and the increasing demand for its services in both launch and space systems segments.

The company’s backlog, standing at $1.067 billion, further reinforces its strong market position and future revenue potential. This growing backlog, up 5% from the previous quarter, indicates sustained customer interest and confidence in Rocket Lab’s capabilities.

Electron: Dominating Small Launch Market

Rocket Lab’s Electron rocket continues to cement its position as the leader in the small launch market. In a year marked by launch anomalies and delays across the industry, Electron has maintained its reliability and launch cadence. The rocket accounted for 64% of all non-SpaceX orbital U.S. launches in 2024 so far, becoming the third most frequently launched rocket globally in 2024.

The company has demonstrated Electron’s versatility and precision through various missions, including back-to-back NASA launches within 11 days, tailored constellation deployments, and complex missions like space debris removal demonstrations. These achievements highlight why satellite operators are willing to pay a premium for Electron’s services.

Rocket Lab has also secured significant new contracts, including a 10-launch agreement with Synspective and multiple launches for other commercial constellation operators. These multi-launch contracts underscore the growing demand for reliable small satellite launch services in the new space economy.

Neutron: Progress Towards Medium-Lift Capabilities

While Electron continues to dominate the small launch market, Rocket Lab is making steady progress on its Neutron rocket, aimed at addressing the medium launch market. The company highlights the strong and growing demand for medium-lift launch services, with projections of over 10,000 satellites needing launch services by 2030 from constellations alone.

Neutron’s development appears to be on a faster timeline compared to other new medium-lift rockets in development. Rocket Lab reports that flight hardware is in production and qualification for 100% of the vehicle. Key milestones include successful hot fire tests of the Archimedes engine, production of structural components, and ongoing construction of launch infrastructure.

The company’s vertical integration strategy is evident in Neutron’s development, with in-house production of major components and the establishment of automated composite production capabilities. This approach could potentially give Rocket Lab a competitive edge in terms of cost and production speed as Neutron enters service.

Space Systems: A Growing Revenue Driver

Rocket Lab’s Space Systems segment is increasingly becoming a major revenue driver for the company. With over $720 million in contract value for satellites in development, production, and operation, this segment is diversifying Rocket Lab’s revenue streams and positioning it as more than just a launch provider.

Notable achievements in the Space Systems segment include:

  1. Completion of twin satellites for NASA’s Mars ESCAPADE mission, showcasing Rocket Lab’s ability to deliver complex spacecraft on time and on budget.

  2. Progress on constellation production for major contracts like Scorpius (18 spacecraft for the Space Development Agency) and Thunder (17 spacecraft buses for Globalstar).

  3. Introduction of the next-generation Advanced Satellite Dispenser (ASD), demonstrating ongoing innovation in satellite deployment technology.

  4. Potential expansion of space solar manufacturing capabilities, supported by proposed federal and state incentives including CHIPS Act funding.

Financial Outlook and Challenges

While Rocket Lab’s revenue growth is impressive, the company still faces challenges in achieving profitability. The Q2 report shows a non-GAAP free cash flow of -$28.3 million and an adjusted EBITDA loss of $21.2 million. However, these figures represent only slight increases from the previous quarter, despite significant revenue growth, suggesting improving operational efficiency. Importantly, Rocket Lab maintains a strong liquidity position with $546.8 million in cash, cash equivalents, marketable securities, and restricted cash at the end of Q2 2024.

The company’s Q3 2024 outlook projects continued revenue growth, with expected revenue between $100 million to $105 million. This guidance indicates confidence in sustained demand for both launch and space systems services. With its substantial cash reserves, Rocket Lab appears well-positioned to fund its ongoing operations and strategic initiatives while working towards profitability.

Conclusion: Positioning for Future Growth in the New Space Economy

Rocket Lab’s Q2 2024 earnings report showcases a company expertly executing its strategy to become a comprehensive space services provider. By leveraging its proven Electron rocket, making significant strides in the Neutron program, and expanding its space systems capabilities, Rocket Lab is solidifying its position as a key player in the evolving new space industry.

The company’s vertical integration approach is a cornerstone of its success, setting it apart from many competitors. This strategy has enabled Rocket Lab to de-risk its operations across both launch and spacecraft manufacturing. The successful development and testing of the Archimedes engine for Neutron, for instance, demonstrates the company’s ability to innovate and control critical technologies in-house.

Rocket Lab’s focus on both launch and spacecraft manufacturing has created a synergistic ecosystem that enhances its competitive edge. As the demand for space-based services continues to grow, the company is strategically positioned to capture a significant share of this expanding market.

The coming years present exciting opportunities for Rocket Lab as it progresses towards its vision of becoming an end-to-end space company. With each successful Electron launch, advancement in the Neutron program, and expansion of its space systems capabilities, Rocket Lab is systematically reducing risks and strengthening its market position.

For industry observers and investors, Rocket Lab’s progress serves as a compelling example of successful strategic execution in the commercial space sector. The company’s achievements highlight the immense potential in building a comprehensive space services business in the 21st century, showcasing how innovative approaches and vertical integration can drive success in this dynamic industry.

Wild Wild Space: The Frenetic Race to Dominate Low-Earth Orbit


The long-awaited documentary based on Ashlee Vance’s book “When the Heavens Went on Sale” is set to premiere on July 17th. In Ashlee’s own words, “Wild Wild Space”

…offers the first in-depth examination of the current incarnation of the space race by focusing on Rocket Lab, Astra Space and Planet Labs and the people behind the companies. It’s an unfiltered look at why making rockets is so hard, the wonders and perils of satellites and why low-Earth orbit is so important to our modern economies and ways of life.

The trailer has already given us this gem:

Screenshot from Wild Wild Space trailer

I’m not sure how much unfiltered Peter Beck is in the film, but I’m ready for whatever it has to offer.

Electron's Life After Neutron

Even as Rocket Lab prepares to launch its new medium-class rocket, Neutron, the smaller Electron launcher will continue to play a crucial role in the company’s strategy. Here’s why:

  1. Market Segmentation: Neutron is designed to complement Electron, not replace it. While Neutron will handle larger payloads, Electron will continue serving the small satellite market.

  2. Growing Small Satellite Demand: The increasing need for small satellite launches aligns perfectly with Electron’s capabilities, ensuring its ongoing relevance.

  3. Precision and Flexibility: Electron’s ability to provide dedicated launches to precise orbits on customer-defined schedules remains a valuable asset, particularly for small satellite operators.

  4. Proven Track Record: With nearly 50 successful launches, Electron has established a reputation for reliability and performance that customers trust.

  5. Cost-Effectiveness: For smaller payloads, Electron is likely to remain more economical than its larger counterpart.

  6. Rapid Launch Capabilities: Electron’s frequent launch schedule and multiple launch sites, including Rocket Lab’s private facility in New Zealand, offer unique advantages.

  7. Vertical Integration: Rocket Lab’s end-to-end space solutions benefit from having both Electron and Neutron available, catering to a wider range of customer needs.

  8. Complementary Roles: Rocket Lab envisions a future where both rockets contribute equally to their launch business, with Neutron splitting its missions between customer payloads and the company’s own satellites.

Electron and Neutron are positioned to serve different segments of the launch market. This dual-rocket strategy allows Rocket Lab to offer a comprehensive range of services, maintaining its competitive edge in the dynamic space industry.

Peter Beck on Vertical Integration

Video - Behind Rocket Lab’s 50th launch: How Electron succeeded

An interesting quote from Peter Beck’s most recent interview with NZ Herald senior business journalist Madison Reidy:

“If you’re in the commercial telecoms business from space, you’re in a very difficult spot right now because it’s impossible to keep up with the ability for someone to build their own rocket and launch it whenever they need to launch it and deploy that service.”

Something to think about as we wait for Rocket Lab to reveal their constellation plans.

Rocket Lab Signs Largest Launch Agreement with Synspective

Rocket Lab and Synspective Sign 10 Launch Deal

Rocket Lab has announced a significant expansion of its partnership with Japanese Earth observation company Synspective, signing a contract for ten dedicated Electron rocket launches between 2025 and 2027. This agreement, the largest in Rocket Lab’s history, will support the growth of Synspective’s StriX constellation of synthetic aperture radar (SAR) satellites.

The deal was unveiled at an event in Tokyo, attended by key executives from both companies and New Zealand Prime Minister Christopher Luxon, who highlighted the importance of international collaboration in driving the global space industry forward. Synspective’s StriX satellites are designed to collect high-resolution imagery of Earth’s surface, capable of detecting millimetre-level changes day or night and through any weather conditions. By launching on dedicated Electron missions, Synspective will have greater control over their launch schedule and orbital placement, ensuring optimal coverage and performance for their constellation.

The new multi-launch agreement builds upon an already strong partnership between Rocket Lab and Synspective. Rocket Lab has served as a dedicated launch provider for Synspective since 2020, having successfully deployed four StriX satellites across four missions to date, with two more launches planned for this year from Launch Complex 1 in New Zealand.

This landmark deal not only demonstrates the rapid growth of Japan’s space industry but also underscores the increasing demand for tailored small satellite launch services. Rocket Lab’s Electron rocket, manufactured in the USA and launched from New Zealand, provides a unique and flexible solution for companies like Synspective looking to build out their satellite constellations efficiently. As Synspective continues to expand its StriX constellation and its Earth observation capabilities, this long-term partnership with Rocket Lab will play a crucial role in enabling the company to scale its operations and deliver valuable data and insights to its customers.

Previous Rocket Lab / Syspective Missions

Launch 45 | 13 March 2024

  • Name: Owl Night Long
  • Customer: Synspective
  • Launch Site: Launch Complex 1
  • Description: The mission aimed to launch a synthetic aperture radar satellite for urban infrastructure monitoring.

Launch 30 | 15 September 2022

  • Name: The Owl Spreads Its Wings
  • Customer: Synspective
  • Launch Site: Launch Complex 1
  • Description: This mission launched another synthetic aperture radar satellite for urban monitoring.

Launch 24 | 28 February 2022

  • Name: The Owl’s Night Continues
  • Customer: Synspective
  • Launch Site: Launch Complex 1
  • Description: The mission deployed another satellite for urban infrastructure monitoring using SAR.

Launch 17 | 15 December 2020

  • Name: The Owl’s Night Begins
  • Customer: Synspective
  • Launch Site: Launch Complex 1
  • Description: This mission launched the first of Synspective’s SAR satellites for urban infrastructure monitoring.

Peter Beck Interviewed by Scientific American

This is a great closing quote on Rocket Lab’s business model:

The ultimate goal for us is to become the end-to-end space company that makes space far more accessible and that makes these kinds of climate change missions even more feasible. At the moment the space industry is still very bifurcated. You have to be an expert in spacecraft and know all these things about space to be able to provide a service on Earth. But consolidating that into a single company that researchers, commercial customers and governments can just go to and ask for missions is the idea. I think that’s what large, successful space companies of the future are going to look like. That’s how we make these missions frequent, accessible and affordable.

Redefining Efficiency in Space Operations

The small launch market has experienced significant growth and innovation in recent years, with companies like Rocket Lab leading the charge. As the demand for small satellite launches continues to increase, vertical integration has emerged as a essential strategy for players in this space to survive and thrive. Vertical integration involves a company controlling multiple stages of the supply chain, from component manufacturing to launch services and satellite operations. This post explores why vertical integration is essential for companies in the small launch market, using Rocket Lab as a prime example.

Supply Chain Assurance and Control

One of the primary reasons for vertical integration in the small launch market is to ensure a reliable and stable supply chain. By manufacturing critical components in-house, companies like Rocket Lab maintain tight control over quality, availability, and pricing. This is particularly important for niche components with limited suppliers or long lead times. Vertical integration minimizes the risks associated with supply chain disruptions, such as delays or quality issues, which can have severe consequences in the fast-paced and competitive space industry.

Cost Reduction and Efficiency

Vertical integration enables small launch providers to reduce costs and improve efficiency. By owning and controlling multiple stages of their space systems supply chain, companies can eliminate markup costs associated with third-party suppliers and streamline operations. Rocket Lab, for example, has invested heavily in advanced manufacturing techniques, such as 3D printing and carbon composites, to produce high-quality components at a lower cost and with shorter lead times. This approach allows the company to offer competitive pricing to its customers while maintaining healthy profit margins.

Flexibility and Customization

Another key advantage of vertical integration is the ability to offer customized solutions to customers. Small satellite operators often have unique requirements for their missions, such as specific orbital parameters or timeline constraints. By controlling the entire launch process, from component manufacturing to mission planning and execution, vertically integrated launch providers can offer a higher degree of flexibility and customization to meet the needs of their customers. This level of service is particularly valuable in the small launch market, where customers are often working on innovative and niche applications.

Enabling Constellation Deployment and Servicing

As the small satellite industry grows, many companies are looking to deploy and operate their own constellations for applications like Earth observation, communications, or IoT services. Vertically integrated launch providers are well-positioned to support these customers by offering end-to-end solutions, from satellite manufacturing to launch services and on-orbit operations.

Rocket Lab has significantly advanced its vertical integration by expanding capabilities beyond launch services. The company has developed a range of satellite platforms, including the Photon and other satellite buses, which can serve as customizable bases for various payloads and missions. These satellite buses provide a comprehensive solution, enabling customers to focus on their specific mission objectives while Rocket Lab handles satellite manufacturing and integration processes. The acquisition of Sinclair Interplanetary, a leading provider of high-quality satellite components and subsystems, further strengthens Rocket Lab’s vertical integration strategy. By incorporating Sinclair’s expertise and products, Rocket Lab enhances its ability to deliver reliable and cost-effective satellite solutions.

Moreover, vertically integrated companies like Rocket Lab can deliver turnkey constellations, including fully managed services, to customers without the typical revenue stacking and complexity associated with multiple vendors. This streamlined approach reduces barriers to entry for organizations looking to leverage small satellite constellations, making it easier and more affordable to access space-based services and data.

Disrupting the Earth Observation and LEO Services Market

Vertical integration presents an opportunity for small launch providers to disrupt the Earth observation (EO) and low Earth orbit (LEO) services market. By controlling the entire value chain, from satellite manufacturing to data delivery, vertically integrated companies can offer more affordable and accessible solutions to a wider range of customers. This is particularly relevant in the EO market, where traditional providers have relied on large, expensive satellites with long development cycles. Companies like Rocket Lab, with their ability to manufacture and launch small satellites quickly and cost-effectively, can democratize access to EO data and services, enabling new applications and business models.

Conclusion

Vertical integration is a critical strategy for companies in the small launch market to survive and succeed. By controlling multiple stages of the supply chain, companies like Rocket Lab ensure supply chain stability, reduce costs, improve efficiency, offer customized solutions, and support the deployment and operation of revenue-generating constellations. The ability to deliver turnkey solutions, including managed constellation services, strengthens the value proposition of vertically integrated launch providers. As the small satellite industry evolves, vertically integrated companies will be well-positioned to capture new opportunities and disrupt traditional markets, providing end-to-end solutions from component manufacturing to on-orbit operations.

Beyond Cost per Kilogram

The belief that the cost of mass to orbit is the sole determining factor in the viability and success of satellite missions is an oversimplification that fails to account for the diverse needs and requirements of satellite operators. While rideshare options, where multiple satellites share space on a single launch vehicle, can offer cost savings, they come with significant limitations that make them unsuitable for many missions. Rocket Lab, a leading small satellite launch provider, demonstrates why dedicated launches to precise orbits, on a schedule dictated by the customer, are crucial for the success of many satellite projects.

  1. Orbital precision: One of the key advantages of dedicated launches is the ability to place satellites into specific, precisely targeted orbits. This is particularly important for satellites that require specific altitudes, inclinations, or orbital planes to fulfill their intended functions, such as Earth observation, communications, or scientific research. Rideshare opportunities often have predetermined orbital parameters that may not align with the needs of individual satellites, compromising their performance and effectiveness. Rocket Lab’s Electron rocket, with its high-precision orbital insertion capabilities, enables customers to achieve the exact orbits they require, optimizing their satellites' performance and mission success.

  2. Timing and scheduling: Satellite operators often have specific timeline requirements dictated by factors such as mission objectives, funding cycles, or coordination with other assets. Rideshare launches operate on fixed schedules determined by the primary payload, leaving secondary payloads with little to no control over the timing of their deployment. This lack of flexibility can lead to costly delays or missed opportunities. In contrast, dedicated launches, like those provided by Rocket Lab, allow customers to dictate their own launch schedules, ensuring that their satellites are deployed when needed, minimizing delays, and maximizing the value of their investments.

  3. Mission assurance and risk mitigation: Sharing a launch vehicle with other payloads introduces additional risks and uncertainties. A failure or malfunction in the primary payload or another secondary payload can jeopardize the entire mission, resulting in the loss of all satellites on board. Dedicated launches, on the other hand, provide a higher level of mission assurance by eliminating the risks associated with other payloads. Rocket Lab’s focus on reliability, with its proven track record of successful launches and advanced manufacturing techniques, further enhances mission assurance for its customers.

  4. Affordability and value: While rideshare options may offer lower costs per kilogram of mass to orbit, the overall value proposition for satellite operators must take into account factors beyond just the launch cost. The ability to precisely target desired orbits, control launch schedules, and minimize risks can significantly enhance the value of a satellite mission. Rocket Lab’s dedicated launch services, with prices starting at around $7.5 million, provide an affordable option for customers who prioritize these factors. The company’s streamlined production processes and innovative technologies enable it to offer competitive pricing while still delivering the benefits of dedicated launches.

While the cost of mass to orbit is undoubtedly an important consideration, it is not the only factor that determines the success and value of satellite missions. Rocket Lab’s ability to provide dedicated launches to precise orbits, on schedules dictated by the customer, and at affordable prices, demonstrates the importance of considering a broader range of factors when evaluating launch options. As the space industry continues to evolve and diversify, with an increasing number of small satellites and specialized missions, the demand for flexible, reliable, and customizable launch services will only continue to grow. Companies like Rocket Lab, with their focus on providing value beyond just the cost per kilogram, will play a crucial role in enabling the next generation of satellite missions and driving innovation in the space industry.

AWS Gearing Up To Support GenAI for Space

Amazon Web Services (AWS) is strategically positioning its cloud infrastructure to leverage the potential of generative AI in transforming space and other industries. With over 60% of AWS' space and aerospace customers already using AI, the company predicts a significant increase in the adoption of generative AI in the coming years. AWS has restructured internally to focus on generative AI, creating a dedicated “generative AI for space” team and a laboratory for customers to experiment with new applications. The company sees three main areas for generative AI in space: geospatial analytics, spacecraft design, and constellation management.

Podcast: Rocket Lab's Peter Beck and Adam Spice Discuss Neutron, Space Systems, and Strategy

Rocket Lab CEO Peter Beck and CFO Adam Spice continue the post-earnings release podcast rounds with an appearance on Dave G Investing. Some key takeaways from both:

Peter Beck

  • Building a rocket is a challenging process, with much of the work going into infrastructure, factories, and test facilities, not just the rocket itself.
  • Design for Neutron prioritizes affordability and reusability, with tradeoffs made to optimize performance and cost.
  • Block upgrades for Neutron will likely follow a similar path to Electron, focusing on incremental improvements rather than major redesigns.
  • Rocket Lab’s composite structures are a core strength, and the company has organized a new business unit to leverage this capability.
  • The space industry is at an inflection point, with vertically integrated companies like SpaceX and Rocket Lab positioned to become the dominant players in the future while existing primes are stepping back.
  • Rocket Lab is producing more than 2,000 reaction wheels this year.
  • Beck on the minimal impact that an Electron customer delay has on revenue: “Just so people understand that from a financial standpoint we collect 90% of all of the the launch contract prior to ignition so there’s generally only 10% of the contract left when we ignite the rocket and as the rocket is being built you know we’re collecting against milestones along the way so there’s never any like rocket sitting there that that owes us a heap of money.”

Adam Spice

  • Neutron’s margin profile is expected to improve more quickly than Electron’s due to its reusability being designed from the start.
  • The investment in Neutron’s manufacturing facilities, such as the composite facility in Maryland, can benefit other parts of the business.
  • The Space Systems side of the business is less capital-intensive than the rocket side, and Rocket Lab has invested in its manufacturing footprint and systems to enable scalability.
  • Government business, particularly opportunities like the Space Development Agency (SDA) platform, represents a significant growth opportunity for the company.
  • Sinclair’s reaction wheel production has scaled from 150 a year to thousands since being acquired by Rocket Lab, creating significant opportunities for increased margin.

Both Beck and Spice emphasized Rocket Lab’s long-term vision of becoming an end-to-end space company, with vertical integration and the ability to provide complete space-based solutions to customers. They additionally highlighted the company’s focus on execution, delivery, and transparency as key differentiators in the evolving space industry.

Podcast: Peter Beck on Q1 Earnings, Neutron, and Rocket Lab's Vertical Integration Strategy

In a recent appearance on the Vince is Bullish podcast, Rocket Lab CEO Peter Beck discussed the company’s Q1 earnings and provided insights into its future plans and the space industry as a whole. Here are the key takeaways from the interview:

  • Launch manifest flexibility: Beck emphasized that launch delays and rescheduling are common in the industry and that Rocket Lab’s diversified business helps mitigate the financial impact of such changes.
  • Neutron rocket contracts: Rocket Lab plans to sign Neutron launch contracts once the rocket is close to its first flight, ensuring they can meet customer demands and secure the best pricing.
  • Neutron’s target customers: The rocket is designed to serve a wide range of customers, including mega-constellation operators, government agencies, and other commercial entities.
  • “I fully predict that 50% of Neutron launches will be other people’s and 50% of Neutron launches will be ourselves.”
  • Vertical integration and acquisitions: Rocket Lab pursues vertical integration when the supply chain is too slow or expensive. Acquisitions are made to secure strategically important capabilities or to create synergies with existing business lines.
  • Competing with SpaceX: Beck believes that the space industry will be dominated by companies with their own launch capabilities, like SpaceX and Rocket Lab. He sees Neutron as a medium-class launcher complementing Electron, serving different market segments than Starship.
  • Future vision: Rocket Lab aims to become an end-to-end space company, providing not just launch services and satellite manufacturing but also complete space-based solutions and services to customers.

Beck’s podcast appearance highlights Rocket Lab’s ambitious long-term vision and strategic positioning within the rapidly evolving space industry. Through vertical integration, strategic acquisitions, and the development of the Neutron rocket, the company is actively working towards becoming an end-to-end space solutions provider. Beck’s insights reveal his unwavering commitment to playing a pivotal role in shaping the future of spaceflight, as he lays the groundwork to capitalize on the limitless opportunities that lie ahead in the space sector and positions Rocket Lab to be a multi-generational space company.

Rocket Lab Analysis Worth Tracking

If you track the Rocket Lab community on Twitter you have likely already run across detailed analysis of the company by @Tim_X94. If not, I highly recommend that you give some of his more substantial posts a read and give him a follow. Looking beyond the exciting “space stuff”, he dives deep into Rocket Lab’s strategic positioning, capital efficiency, and relentless execution - themes that resonate with my own analysis of the company.

I reached out to him today and asked him to round up a few highlights for this post:

  • TIm discusses Rocket Lab’s acquisition of a former Lockheed Martin facility in Middle River, Maryland, which will serve as a key component in the company’s vertical integration strategy. The facility, called the Space Structures Complex, will not only be used for Neutron rocket production but also for manufacturing satellite constellations, such as the potential SDA PWSA Tranche 3 orders and other large-scale contracts similar to the MDA Globalstar deal. The author emphasizes that the close proximity of the facility to the Neutron launch pad in Wallops will significantly improve Rocket Lab’s supply chain, logistics, and launch cadence in the long term, underpinning the company’s end-to-end space solutions approach.

  • Tim highlights Rocket Lab’s strategic decision to utilize NASA’s Stennis Space Center’s A-3 Test Stand for testing their Archimedes engine, which was built by NASA for $349 million but never used until now. This move demonstrates Rocket Lab’s capital efficiency and execution, as they secured a favorable lease rate and accelerated the development timeline for the Neutron rocket, giving them a competitive edge over their rivals, such as Relativity Space, who are investing heavily in redeveloping older test stands.

  • This thread digs into why Rocket Lab’s private launch site in Mahia, New Zealand, provides a significant competitive advantage over U.S. small launch competitors, as it offers superior flexibility, high launch cadence capabilities, and lower labor costs, all of which are protected by the regulatory moat of ITAR (International Traffic in Arms Regulations), making it difficult for competitors to replicate Rocket Lab’s launch infrastructure.

  • Tim asserts that Rocket Lab’s Electron rocket has the necessary ingredients to maintain its position as the low-cost small launch leader in 2030 and beyond, particularly for U.S. single missions with payloads under 300kg, due to its competitive launch costs, high cadence capabilities, unique regulatory advantages, and lower labor costs in New Zealand, while facing more competition in the small constellation launch market from larger payload capacity rockets.

  • In this series of tweets, Tim argues that while SpaceX’s Starship is expected to dominate the launch vehicle market with its capabilities and low launch costs, it will not make Rocket Lab’s Neutron obsolete in the short or long term due to Neutron’s competitive launch costs, the need for multiple launch providers to address the current shortage, and the U.S. government’s desire to avoid relying solely on Elon Musk’s companies for critical space infrastructure.

  • Tim argues that Rocket Lab’s strategic focus on providing bespoke turnkey solutions, including launch, satellite manufacturing, and operation services, for the U.S. government’s defense programs will allow the company to significantly grow its business and differentiate itself from competitors like SpaceX.

  • Tim details why he believes that Rocket Lab is poised to win significant U.S. government contracts for the Space Development Agency’s Proliferated Warfighter Space Architecture (SDA PWSA) Tranche 3 satellites due to its vertical integration, ability to meet schedules, and in-house satellite bus manufacturing capabilities, while legacy defense prime contractors face supply chain issues and challenges adapting to the new paradigm of small satellite constellations.

U.S. and New Zealand Strengthen Space Cooperation with Inaugural Bilateral Space Dialogue

On April 12, 2024, the United States and New Zealand held their first bilateral Space Dialogue in Washington, D.C., marking a significant milestone in the 150th anniversary of their space relationship. The key outcomes of the dialogue include:

  • Emphasis on the growth of the commercial space sector and the changing role of government in commercial space activities
  • Intent to continue cooperation on issues such as launch, payloads, and space situational awareness
  • Potential for expanded cooperation on policy and regulatory interoperability related to commercial space
  • Discussions on opportunities to advance scientific education, research, and space cooperation
  • Recognition of New Zealand’s geographic advantages in enabling frequent and responsive launches for U.S. industry and government agencies which added “strategic resilience” to launch capacity
  • Signing of an updated Memorandum of Cooperation between the New Zealand Space Agency and the Federal Aviation Administration
  • Announcement of the first round of joint research projects between New Zealand research institutes and NASA centers, focusing on Earth observation
  • Appreciation for the internship opportunities provided by NASA and the NASA Jet Propulsion Laboratory to high-achieving New Zealand students
  • Launch of MethaneSAT, a unique partnership involving government, non-profit, academic, and commercial organizations from both countries

The dialogue also included a commercial roundtable, co-chaired by the New Zealand Minister for Space and the Director of the U.S. Department of Commerce’s Office of Space Commerce, which highlighted existing partnerships and opportunities for stronger bilateral cooperation between the two countries' commercial space sectors. You can read the full statement on the U.S. State Department’s website.

DoD Moves to Boost Production Of Critical Componenets For Space Solar

Moving industry, defense, services, and people, to space requires a lot of supply chain logistics work on Earth:

The Defense Department announced April 16 it awarded a $14.4 million contract to semiconductor manufacturer 5N Plus to boost production of space-qualified materials for solar cells.

…According to market studies, demand for solar power for space applications is rapidly accelerating and expected to exceed current available capacity.

Relativity Space Pushes NSSL Bid To Next Year

Terran R won’t be ready but they expect to have a credible path to flight by next year:

Relativity was initially aiming to compete for the first round of NSSL Phase 3 contracts expected to be awarded later this year. However, the California-based company’s new Terran R rocket won’t fly until 2026 at the earliest, which falls outside the timeframe for this year’s NSSL Phase 3 awards.

“We’ve been fairly transparent with our schedule over the last year and have continued to hit our milestones,” Joshua Brost, vice president of business development at Relativity Space, told SpaceNews. “We’re very comfortable about on-ramping to NSSL in the future, likely next year as we approach that 12 months from initial launch.”

Rocket Lab Takes Significant Step Towards Reusable Electron Rocket

A Recovered Electron Booster Floating in the Ocean.

Rocket Lab, a leading small satellite launch provider, has announced a major milestone in its quest to make its Electron rocket the world’s first reusable small orbital launch vehicle. Here are the key points:

  • A previously flown Electron first stage from the January 2024 “Four of a Kind” mission has been returned to Rocket Lab’s production line for final acceptance testing and eventual reflight.
  • The stage has already passed rigorous tests, including tank pressurization, helium leak checks, and carbon fiber structural testing.
  • Rocket Lab has been successfully recovering Electron first stages from previous missions, returning them to Earth under parachutes and collecting them from the ocean.

The company has made iterative modifications across multiple recovery missions to perfect the recovery process, including:

  • Ensuring the rocket’s carbon composite structure survives the intense heat and forces of reentry
  • Refining the parachute system for reliable deployment and smooth deceleration
  • Improving telemetry and tracking for rapid stage location and collection
  • Successfully launching a previously flown Rutherford engine

If the stage passes final acceptance and qualification testing, Rocket Lab will consider opportunities for reflying it in the new year.

This milestone marks an exciting step forward in Rocket Lab’s efforts to increase launch cadence and reduce costs through the reuse of Electron’s first stage. The payload for the potential reflight will be announced following the completion of final testing.

Rocket Lab Enters The Carbon Composite Manufacturing Business

Rocket Lab has incubated and acquired some of the best carbon composite manufacturing talent in the world, acquired some of the most expensive and capable tooling in the world for pennies on the dollar, and is now maximizing that investment by entering the carbon composite manufacturing business.

Screenshot of Rocket Lab Tweet

This is a no-brainer and typical of Rocket Lab’s persistent resource efficiency. The personnel and equipment in this side of the business are extremely rare and valuable and the last thing you want is either of them sitting idle. This also continues to offset the risk posed by the lumpy launch side of the business which is always a good thing.

Rocket Lab's Acquisition Strategy: Insights from Previous Acquisitions

While I have a solid understanding of Rocket Lab’s approach to M&A, I thought it would be interesting to feed AI several of the company’s acquisition announcements and ask it to find common themes that might inform their approach to future acquisitions. Here’s the result:

New Space Blog
Examine the press releases from Rocket Lab regarding their acquisition of smaller companies. Specifically, focus on the instances where Rocket Lab has either fully acquired these companies or purchased substantial parts of their operations. Craft a blog post that identifies and outlines the recurring themes from these press releases in bullet points. Further, analyze these themes to predict the nature of Rocket Lab’s potential future acquisitions, providing insights into why these particular types of companies might be targeted next.

Claude 3 Opus
Rocket Lab, a leading launch and space systems company, has been on an acquisition spree in recent years. By examining their press releases regarding the acquisition of smaller companies, several recurring themes emerge:

  • Vertical Integration: Rocket Lab has consistently targeted companies that complement their existing capabilities, allowing them to streamline their production process and offer comprehensive space solutions. The acquisitions of SolAero (solar power products and precision aerospace structures), Advanced Solutions, Inc. (mission software, simulation, and GNC solutions), and Planetary Systems Corporation (spacecraft separation systems) all contribute to Rocket Lab’s goal of vertical integration.

  • Strengthening Space Systems Portfolio: Rocket Lab has focused on acquiring companies that enhance their Space Systems division. The acquisitions of Sinclair Interplanetary, Advanced Solutions, Inc., and Planetary Systems Corporation have all brought valuable expertise and products to Rocket Lab’s spacecraft hardware solutions.

  • Leveraging Manufacturing Capabilities: Rocket Lab has strategically acquired companies with advanced manufacturing facilities and skilled teams. The acquisition of SailGP Technologies' manufacturing complex in Warkworth, New Zealand, and the purchase of Virgin Orbit’s Long Beach facility both demonstrate Rocket Lab’s commitment to expanding their production capabilities.

  • Retaining Talent: In their acquisitions, Rocket Lab has prioritized retaining the talented teams from the acquired companies. This is evident in the SailGP Technologies acquisition, where over 90% of the New Zealand-based staff were retained, and in the integration of teams from Advanced Solutions, Inc. and Planetary Systems Corporation.

Based on these recurring themes, we can predict the nature of Rocket Lab’s potential future acquisitions:

  1. Companies with unique space technologies: Rocket Lab will likely continue to target companies that offer innovative technologies or products that can be integrated into their Space Systems division. This could include companies specializing in advanced sensors, propulsion systems, or communication technologies for satellites.

  2. Firms with specialized manufacturing capabilities: As Rocket Lab continues to scale up production of their Electron rocket and develop the larger Neutron rocket, they may seek out companies with specialized manufacturing capabilities in advanced materials, such as composites or 3D printing, to further streamline their production processes.

  3. Startups with talented teams: Rocket Lab recognizes the value of skilled personnel and may target startups with experienced teams in aerospace engineering, software development, or other critical areas. Acquiring these companies allows Rocket Lab to quickly add expertise and accelerate their growth.

  4. Companies with strategic locations: Rocket Lab may consider acquiring companies based in locations that offer strategic advantages, such as proximity to key customers, access to specialized supply chains, or favorable regulatory environments for space activities.

By continuing to acquire companies that align with their vertical integration strategy, strengthen their Space Systems portfolio, expand their manufacturing capabilities, and bring in talented teams, Rocket Lab is positioning itself to be a major player in the rapidly growing space industry. As they continue to scale up and take on more ambitious projects, such as the development of the Neutron rocket, strategic acquisitions will likely remain a key part of their growth strategy.

New Space Blog
Rocket Lab is making significant investments in the development of their Neutron Rocket but recently secured over $300 million in an offering that they have signaled might be leveraged for multiple acquisitions. Given the extra cash on hand, but also the desire to perform multiple acquisitions, what does this say about the potential size and nature of the companies that might be acquired?

Claude 3 Opus
Considering Rocket Lab’s recent cash infusion and their intention to leverage it for multiple acquisitions, we can infer several key points about the potential size and nature of the companies they might target:

  1. Smaller to mid-sized companies: Given the desire to perform multiple acquisitions, Rocket Lab is likely to target smaller to mid-sized companies rather than large, established firms. This approach allows them to spread the cash across several acquisitions, diversifying their investment and reducing risk.

  2. Strategic fit: Rocket Lab will likely prioritize companies that align with their strategic goals, particularly those that support the development of the Neutron rocket. This could include companies specializing in advanced materials, propulsion technologies, or other critical components for the Neutron project.

  3. Complementary capabilities: As seen in their previous acquisitions, Rocket Lab will likely target companies that offer complementary capabilities to their existing operations. This could include firms with expertise in areas such as software development, guidance systems, or satellite technologies that can be integrated into Rocket Lab’s Space Systems division.

  4. Affordable valuations: With a limited budget for multiple acquisitions, Rocket Lab may focus on companies with affordable valuations relative to their strategic value. This could include early-stage startups or companies with strong potential but limited market traction.

  5. Talent acquisition: Rocket Lab may also use these acquisitions as an opportunity to bring in talented teams with specialized skills and experience. Smaller companies often have highly skilled personnel who can contribute significantly to Rocket Lab’s research and development efforts.

  6. Geographic expansion: Rocket Lab might consider acquiring companies based in strategic locations to expand their geographic footprint, access new markets, or tap into local talent pools.

In summary, Rocket Lab’s cash infusion and desire to perform multiple acquisitions suggest that they will likely target smaller to mid-sized companies that offer strategic fit, complementary capabilities, affordable valuations, and skilled talent. These acquisitions will probably focus on supporting the development of the Neutron rocket and expanding Rocket Lab’s Space Systems division, while also potentially enabling geographic expansion. By carefully selecting their acquisition targets, Rocket Lab can maximize the impact of their investment and strengthen their position in the rapidly evolving space industry.

Peter Beck On Building Beautiful Things

Rocket Lab Electron Rocket

Peter Beck, CEO and CTO of Rocket Lab, discussed the company’s innovative culture, future plans, and his advice for aspiring space entrepreneurs in an interview with Gizmodo. Some key points:

  • Rocket Lab fosters innovation by rapidly prototyping and testing ideas, taking bold swings at transformative technologies like 3D-printed rocket engines, and focusing on building aesthetically beautiful products.
  • Beck has established Rocket Lab as an end-to-end space company, combining launch capabilities with satellite manufacturing and operation, catering to customers who want turnkey space solutions.
  • Critical emerging space technologies include internet from space, direct mobile connectivity, and pharmaceutical manufacturing in space. Rocket Lab is involved in all these and other areas through its diverse offerings.
  • The biggest potential space innovation lies in propulsion technology, moving away from conventional chemical rockets to enable more substantial progress.
  • 3D printing is crucial for Rocket Lab, enabling rapid design iterations and manufacturing geometries impossible with traditional techniques.
  • Beck’s advice to entrepreneurs: Focus on developing technologies that address real market needs and have scalability, rather than niche solutions or “cool” tech without demand.

It’s very technical and process focused but this round-table discussion featuring Myles Keefer, Rocket Lab’s Manager of Additive Manufacturing reinforces a lot of the points made by Beck. The engineering philosophy of the company is unique and, in my opinion, underappreciated. It’s more Apple than SpaceX but it’s also informed by an unrelenting focus on efficiency and practicality.

Varda Lands $90M In Series B Funding

This is a very encouraging development, not just for Varda (and Rocket Lab) but also for the potential growth of space manufacturing overall:

Astronauts have been conducting protein crystallization experiments in space for decades on the International Space Station and before that, the Space Shuttle.

But the business case for expanding this research has never materialized — until now. This is for a few different reasons, Asparouhov explained: because of the crew, there are significant limitations to the types of solvents or other materials you can bring onboard the ISS; there are constraints related to intellectual property for work that happens on the station; and pharmaceutical lab equipment designed for use in-space was generally lacking in sophistication compared to the terrestrial versions.

But much has changed, especially in the space industry. Part of the reason Varda is possible today is due to the availability of regular, low-cost rideshare launches from SpaceX and Rocket Lab’s innovations in satellite bus manufacturing. Even beyond these external partnerships, the startup has made significant headway in its own right, as the success of the first mission showed: Their reentry capsule appears to have performed flawlessly and the experiment to reformulate the HIV medicine ritonavir was executed without a hitch, it says.

Varda and Rocket Lab will launch capsule #2 later this year. Keep an eye on this relationship. It will be interesting to see how it develops now that Varda is on firmer footing.

Earth Observation Matures

Payload has a really interesting piece on the state of earth observation (EO) and how the industry is shifting its focus towards profitability, government funding, and addressing niche issues, as commercial demand lags expectations.

Key points:

  • Current EO market breakdown: ~50% US government, 25% allied governments, 25% commercial
  • Major players like Planet, Spire, BlackSky, and Maxar are prioritizing profitability after years of growth
  • Early movers have an advantage with significant initial investments creating barriers to entry
  • Startups need to differentiate through niche capabilities like hyperspectral imaging, climate monitoring, or edge computing
  • AI and data analytics are seen as potential growth drivers for the industry
  • SpaceX’s $1.8B NRO contract highlights the government’s dissatisfaction with the state of EO and their desire for cost-effective EO solutions

Of course the macro-economic environment that many of these companies have come to market in hasn’t helped. As far as I’m concerned the focus on profitability and selectivity in new venture funding is a welcome side effect of these new economic realities. The survivors from the current crop will grow stronger and the industry should finally be able to avoid the boom bust cycle that has plagued previous attempts to cement new space as a persistent and critical part of the economy. The commercial markets will grow - just never as quickly as the pitch decks predict.

Rocket Lab Schedules 2024 Q1 Earnings Call

The webcast is scheduled for May 6, 2024 05:00 PM ET.